PRCC-TFE3 regulates migration and invasion of translocation renal cell carcinomas via activation of Drp1-dependent mitochondrial fission.
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
/ genetics
Carcinoma, Renal Cell
/ genetics
Cell Line, Tumor
Cell Movement
Dynamins
/ metabolism
Humans
Kidney Neoplasms
/ genetics
Mitochondria
/ metabolism
Mitochondrial Dynamics
Mitochondrial Proteins
/ metabolism
Neoplasm Invasiveness
Neoplasm Proteins
/ genetics
Oncogene Proteins, Fusion
/ genetics
Translocation, Genetic
PRCC-TFE3
invasion
migration
mitochondrial fission
tRCC
Journal
Cell biology international
ISSN: 1095-8355
Titre abrégé: Cell Biol Int
Pays: England
ID NLM: 9307129
Informations de publication
Date de publication:
Aug 2020
Aug 2020
Historique:
received:
17
02
2020
revised:
13
04
2020
accepted:
25
04
2020
pubmed:
28
4
2020
medline:
30
3
2021
entrez:
28
4
2020
Statut:
ppublish
Résumé
PRCC-TFE3 translocation renal cell carcinomas (tRCC) is a common subtype of TFE3 tRCCs in which TFE3 fusions are indicated as oncogenes to promote tumor development. PRCC-TFE3 fusions are often accumulated in the nucleus and related to poorer outcomes and higher stages (III/IV). In this study, we found that PRCC-TFE3 could positively regulate expression of both dynamin-related protein 1 (Drp1) and fission protein 1, and alter distribution of mitochondria, which could promote cell migration and invasion independent of matrix metalloproteinase-2 (MMP-2) and MMP-9. Together, our findings showed a new mechanism for PRCC-TFE3 tRCC cell migration and invasion by alteration of mitochondrial dynamics. Thus, targeting dysregulated Drp1-dependent mitochondrial fission may provide a novel strategy for suppressing the progression of PRCC-TFE3 tRCC.
Substances chimiques
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
0
Mitochondrial Proteins
0
Neoplasm Proteins
0
Oncogene Proteins, Fusion
0
Dynamins
EC 3.6.5.5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1727-1733Subventions
Organisme : Beijing Ronghe Medical Development Foundation
Organisme : Nanjing Sci-Tech Development Project
ID : 201803025
Organisme : National Natural Science Foundation of China
ID : 81572512
Organisme : State Key Laboratory of Analytical Chemistry for Life Science
ID : 5431ZZXM2004
Informations de copyright
© 2020 International Federation for Cell Biology.
Références
Argani, P., Lui, M. Y., Couturier, J., Bouvier, R., Fournet, J. C., & Ladanyi, M. (2003). A novel CLTC-TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Oncogene, 22, 5374-5378.
Argani, P., Olgac, S., Tickoo, S. K., Goldfischer, M., Moch, H., Chan, D. Y., … Ladanyi, M. (2007). Xp11 translocation renal cell carcinoma in adults: Expanded clinical, pathologic, and genetic spectrum. American Journal of Surgical Pathology, 31, 1149-1160.
Argani, P., Zhang, L., Reuter, V. E., Tickoo, S. K., & Antonescu, C. R. (2017). RBM10-TFE3 renal cell carcinoma: A potential diagnostic pitfall due to cryptic intrachromosomal Xp11.2 inversion resulting in false-negative TFE3 FISH. American Journal of Surgical Pathology, 41, 655-662.
Cipolat, S., Martins de Brito, O., Dal Zilio, B., & Scorrano, L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proceedings of the National Academy of Sciences of the United States of America, 101, 15927-15932.
Clark, J., Lu, Y. J., Sidhar, S. K., Parker, C., Gill, S., Smedley, D., … Cooper, C. S. (1997). Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene, 15, 2233-2239.
Coussens, L. M., & Werb, Z. (1996). Matrix metalloproteinases and the development of cancer. Chemistry and Biology, 3, 895-904.
Ellis, C. L., Eble, J. N., Subhawong, A. P., Martignoni, G., Zhong, M., Ladanyi, M., … Argani, P. (2014). Clinical heterogeneity of Xp11 translocation renal cell carcinoma: Impact of fusion subtype, age, and stage. Modern Pathology, 27, 875-886.
Fan, J., Kamphorst, J. J., Mathew, R., Chung, M. K., White, E., Shlomi, T., & Rabinowitz, J. D. (2013). Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Molecular Systems Biology, 9, 712.
Huang, Q., Chen, Z., Cheng, P., Jiang, Z., Wang, Z., Huang, Y., … Huang, J. (2019). LYRM2 directly regulates complex I activity to support tumor growth in colorectal cancer by oxidative phosphorylation. Cancer Letters, 455, 36-47.
Kelley, L. C., Chi, Q., Cáceres, R., Hastie, E., Schindler, A. J., Jiang, Y., … Sherwood, D. R. (2019). Adaptive F-actin polymerization and localized ATP production drive basement membrane invasion in the absence of MMPs. Developmental Cell, 48, 313-328. e8.
Martina, J. A., Diab, H. I., Lishu, L., Jeong-A, L., Patange, S., Raben, N., & Puertollano, R. (2014). The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Science Signaling, 7, ra9.
Nezich, C. L., Wang, C., Fogel, A. I., & Youle, R. J. (2015). MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. Journal of Cell Biology, 210, 435-450.
Onodera, Y., Nam, J. M., Horikawa, M., Shirato, H., & Sabe, H. (2018). Arf6-driven cell invasion is intrinsically linked to TRAK1-mediated mitochondrial anterograde trafficking to avoid oxidative catastrophe. Nature Communications, 9, 2682.
Pastore, N., Vainshtein, A., Klisch, T. J., Armani, A., Huynh, T., Herz, N. J., … Ballabio, A. (2017). TFE3 regulates whole-body energy metabolism in cooperation with TFEB. EMBO Molecular Medicine, 9, 605-621.
Pivovarcikova, K., Grossmann, P., Alaghehbandan, R., Sperga, M., Michal, M., & Hes, O. (2017). TFE3-fusion variant analysis defines specific clinicopathologic associations amog Xp11 translocation cancers. American Journal of Surgical Pathology, 41, 138-140.
Qiu, R., Bing, G., & Zhou, X. J. (2010). Xp11.2 Translocation renal cell carcinomas have a poorer prognosis than non-Xp11.2 translocation carcinomas in children and young adults: A meta-analysis. International Journal of Surgical Pathology, 18, 458-464.
Rao, S., Mondragón, L., Pranjic, B., Hanada, T., Stoll, G., Köcher, T., … Penninger, J. M. (2019). AIF-regulated oxidative phosphorylation supports lung cancer development. Cell Research, 29, 579-591.
Slade, L., & Pulinilkunnil, T. (2017). The MiTF/TFE family of transcription factors: Master regulators of organelle signaling, metabolism, and stress adaptation. Molecular Cancer Research, 15, 1637-1643.
Smirnova, E., Griparic, L., Shurland, D. L., & van der Bliek, A. M. (2001). Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Molecular Biology of the Cell, 12, 2245-2256.
Weterman, M. A., Wilbrink, M., & Geurts van Kessel, A. (1996). Fusion of the transcription factor TFE3 gene to a novel gene, PRCC, in t(X;1)(p11;q21)-positive papillary renal cell carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 93, 15294-15298.
Xu, L., Yang, R., Gan, W., Chen, X., Qiu, X., Fu, K., … Guo, H. (2015). Xp11.2 translocation renal cell carcinomas in young adults. BMC Urology, 15, 57.
Yin, X., Wang, B., Gan, W., Zhuang, W., Xiang, Z., Han, X., & Li, D. (2019). TFE3 fusions escape from controlling of mTOR signaling pathway and accumulate in the nucleus promoting genes expression in Xp11.2 translocation renal cell carcinomas. Journal of Experimental & Clinical Cancer Research, 38, 119.
Yoon, Y., Krueger, E. W., Oswald, B. J., & McNiven, M. A. (2003). The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Molecular and Cellular Biology, 23, 5409-5420.
Zhao, J., Zhang, J., Yu, M., Xie, Y., Huang, Y., Wolff, D. W., … u, Y. (2013). Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene, 32, 4814-4824.