Prediction of treatment outcomes for multidrug-resistant tuberculosis by whole-genome sequencing.


Journal

International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases
ISSN: 1878-3511
Titre abrégé: Int J Infect Dis
Pays: Canada
ID NLM: 9610933

Informations de publication

Date de publication:
Jul 2020
Historique:
received: 12 12 2019
revised: 15 04 2020
accepted: 16 04 2020
pubmed: 28 4 2020
medline: 22 9 2020
entrez: 28 4 2020
Statut: ppublish

Résumé

Whole-genome sequencing (WGS) has been proposed to be a powerful tool to predict drug resistance for antitubercular drugs. However, the feasibility of WGS in predicting final treatment outcomes for multidrug-resistant tuberculosis (MDR-TB) patients remains unclear PATIENTS AND METHODS: In this prospective observational study conducted from January 2014 to September 2016, MDR-TB patients were enrolled consecutively. Genotypic drug sensitivity testing was performed via WGS using culture isolates. Patients were followed for two years to determine the treatment outcomes. Multivariate analysis was used to identify the association between information provided by WGS and the final treatment outcomes RESULTS: A total of 123 patients with MDR-TB were included in this study. The overall favorable treatment outcome rate was 60.2%. Multivariate analysis showed that independent risk factors associated with unfavorable treatment outcome including high-level moxifloxacin phenotypic resistance (OR, 4.362; 95%CI, 1.364-13.950; p=0.013), cycloserine phenotypic resistance (OR, 7.457; 95%CI, 1.644-33.819; p=0.009), mutations causing high-level fluoroquinolones resistance (OR, 3.947; 95%CI, 1.195-13.034; p=0.024), and ethA mutation (OR, 3.817; 95% CI, 1.154-12.823; p=0.028). WGS costs for each patient are ¥450 ($63), and the average turnaround time was one week CONCLUSIONS: In summary, WGS showed promising feasibility in predicting treatment outcomes for MDR-TB patients within a clinically relevant time frame.

Sections du résumé

BACKGROUND BACKGROUND
Whole-genome sequencing (WGS) has been proposed to be a powerful tool to predict drug resistance for antitubercular drugs. However, the feasibility of WGS in predicting final treatment outcomes for multidrug-resistant tuberculosis (MDR-TB) patients remains unclear PATIENTS AND METHODS: In this prospective observational study conducted from January 2014 to September 2016, MDR-TB patients were enrolled consecutively. Genotypic drug sensitivity testing was performed via WGS using culture isolates. Patients were followed for two years to determine the treatment outcomes. Multivariate analysis was used to identify the association between information provided by WGS and the final treatment outcomes RESULTS: A total of 123 patients with MDR-TB were included in this study. The overall favorable treatment outcome rate was 60.2%. Multivariate analysis showed that independent risk factors associated with unfavorable treatment outcome including high-level moxifloxacin phenotypic resistance (OR, 4.362; 95%CI, 1.364-13.950; p=0.013), cycloserine phenotypic resistance (OR, 7.457; 95%CI, 1.644-33.819; p=0.009), mutations causing high-level fluoroquinolones resistance (OR, 3.947; 95%CI, 1.195-13.034; p=0.024), and ethA mutation (OR, 3.817; 95% CI, 1.154-12.823; p=0.028). WGS costs for each patient are ¥450 ($63), and the average turnaround time was one week CONCLUSIONS: In summary, WGS showed promising feasibility in predicting treatment outcomes for MDR-TB patients within a clinically relevant time frame.

Identifiants

pubmed: 32339719
pii: S1201-9712(20)30260-5
doi: 10.1016/j.ijid.2020.04.043
pii:
doi:

Substances chimiques

Antitubercular Agents 0
Fluoroquinolones 0
Moxifloxacin U188XYD42P

Types de publication

Journal Article Observational Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

68-72

Informations de copyright

Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.

Auteurs

Guiqing He (G)

Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.

Yang Li (Y)

Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.

Xinchang Chen (X)

Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.

Jiazhen Chen (J)

Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.

Wenhong Zhang (W)

Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China; State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Key Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China. Electronic address: zhangwenhong@fudan.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH