Consumption of Cooked Black Beans Stimulates a Cluster of Some Clostridia Class Bacteria Decreasing Inflammatory Response and Improving Insulin Sensitivity.
Animals
Body Fat Distribution
Butyrates
/ metabolism
Clostridiales
Dietary Supplements
Endotoxemia
/ prevention & control
Energy Metabolism
Fabaceae
Gastrointestinal Microbiome
Glucose
/ metabolism
Healthy Volunteers
Insulin Resistance
Leptin
/ metabolism
Liver
/ metabolism
Male
Models, Animal
Oxygenases
/ metabolism
Rats, Wistar
Spondylitis, Ankylosing
/ microbiology
Ruminococcus bromii
SCFA
black bean
gut microbiota
incretins
insulin sensitivity
resistant starch
Journal
Nutrients
ISSN: 2072-6643
Titre abrégé: Nutrients
Pays: Switzerland
ID NLM: 101521595
Informations de publication
Date de publication:
23 Apr 2020
23 Apr 2020
Historique:
received:
04
03
2020
revised:
17
04
2020
accepted:
21
04
2020
entrez:
29
4
2020
pubmed:
29
4
2020
medline:
26
2
2021
Statut:
epublish
Résumé
There is limited information on the effect of black beans (BB) as a source of protein and resistant starch on the intestinal microbiota. The purpose of the present work was to study the effect of cooked black beans with and without high fat and sugar (HF + S) in the diet on body composition, energy expenditure, gut microbiota, short-chain fatty acids, NF-κB, occluding and insulin signaling in a rat model and the area under the curve for glucose, insulin and incretins in healthy subjects. The consumption of BB reduced the percentage of body fat, the area under the curve of glucose, serum leptin, LPS, glucose and insulin concentrations and increased energy expenditure even in the presence of HF + S. These results could be mediated in part by modification of the gut microbiota, by increasing a cluster of bacteria in the Clostridia class, mainly
Identifiants
pubmed: 32340138
pii: nu12041182
doi: 10.3390/nu12041182
pmc: PMC7230233
pii:
doi:
Substances chimiques
Butyrates
0
Leptin
0
Oxygenases
EC 1.13.-
dimethylaniline monooxygenase (N-oxide forming)
EC 1.14.13.8
Glucose
IY9XDZ35W2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Gut. 2013 Dec;62(12):1745-52
pubmed: 23263527
Int Rev Cytol. 2006;248:261-98
pubmed: 16487793
Front Microbiol. 2018 Nov 05;9:2558
pubmed: 30455672
Dig Dis Sci. 2012 Dec;57(12):3126-35
pubmed: 22684624
mBio. 2015 Sep 29;6(5):e01058-15
pubmed: 26419877
Microbiome. 2016 Aug 08;4(1):42
pubmed: 27502158
Nutrients. 2018 May 25;10(6):
pubmed: 29799474
Gut Microbes. 2013 May-Jun;4(3):236-40
pubmed: 23549436
J Clin Diagn Res. 2017 Jun;11(6):CC17-CC20
pubmed: 28764152
Med Sci Sports Exerc. 2018 Apr;50(4):747-757
pubmed: 29166320
Cell Metab. 2013 Jan 8;17(1):49-60
pubmed: 23312283
Gastroenterology. 2000 Apr;118(4):724-34
pubmed: 10734024
Appl Environ Microbiol. 2007 Feb;73(4):1073-8
pubmed: 17189447
Cell Metab. 2015 Aug 4;22(2):320-31
pubmed: 26244934
Appl Environ Microbiol. 2002 Oct;68(10):5186-90
pubmed: 12324374
Cell Rep. 2017 Jun 20;19(12):2451-2461
pubmed: 28636934
J Biol Chem. 2003 Mar 28;278(13):11312-9
pubmed: 12496283
J Clin Invest. 1998 Feb 1;101(3):515-20
pubmed: 9449682
Endocrinology. 2005 Dec;146(12):5092-9
pubmed: 16123168
Nutrients. 2016 Sep 20;8(9):
pubmed: 27657118
Bioinformatics. 2010 Oct 1;26(19):2460-1
pubmed: 20709691
mBio. 2019 Jan 29;10(1):
pubmed: 30696735
Clin Nutr Res. 2019 Oct 28;8(4):318-328
pubmed: 31720257
Genes Nutr. 2014 Jan;9(1):367
pubmed: 24292989
Adv Nutr. 2019 Mar 1;10(2):303-320
pubmed: 30668615
Trends Pharmacol Sci. 2013 Apr;34(4):226-32
pubmed: 23489932
Br J Nutr. 2014 Sep 28;112(6):886-99
pubmed: 25201301
Nutrients. 2019 Nov 15;11(11):
pubmed: 31731665
Nat Methods. 2010 May;7(5):335-6
pubmed: 20383131
Nutrients. 2018 Oct 13;10(10):
pubmed: 30322146
Nutrients. 2019 Sep 13;11(9):
pubmed: 31540270
Cell Metab. 2011 May 4;13(5):517-26
pubmed: 21531334
Nat Med. 2013 May;19(5):576-85
pubmed: 23563705