Bidimensional lamellar assembly by coordination of peptidic homopolymers to platinum nanoparticles.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
28 04 2020
Historique:
received: 07 11 2019
accepted: 25 03 2020
entrez: 30 4 2020
pubmed: 30 4 2020
medline: 30 7 2020
Statut: epublish

Résumé

A key challenge for designing hybrid materials is the development of chemical tools to control the organization of inorganic nanoobjects at low scales, from mesoscopic (~µm) to nanometric (~nm). So far, the most efficient strategy to align assemblies of nanoparticles consists in a bottom-up approach by decorating block copolymer lamellae with nanoobjects. This well accomplished procedure is nonetheless limited by the thermodynamic constraints that govern copolymer assembly, the entropy of mixing as described by the Flory-Huggins solution theory supplemented by the critical influence of the volume fraction of the block components. Here we show that a completely different approach can lead to tunable 2D lamellar organization of nanoparticles with homopolymers only, on condition that few elementary rules are respected: 1) the polymer spontaneously allows a structural preorganization, 2) the polymer owns functional groups that interact with the nanoparticle surface, 3) the nanoparticles show a surface accessible for coordination.

Identifiants

pubmed: 32345967
doi: 10.1038/s41467-020-15810-y
pii: 10.1038/s41467-020-15810-y
pmc: PMC7188844
doi:

Substances chimiques

Peptides 0
Polymers 0
Platinum 49DFR088MY

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2051

Références

Kao, J., Thorkelsson, K., Bai, P., Rancatore, B. J. & Xu, T. Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules. Chem. Soc. Rev. 42, 2654–2678 (2013).
doi: 10.1039/C2CS35375J
Mei, S., Staub, M. & Li, C. Y. Directed nanoparticle assembly through polymer crystallization. Chem. Eur. J. 26, 349–361 (2020).
doi: 10.1002/chem.201903022
Yi, C., Yang, Y., Liu, B., He, J. & Nie, Z. Polymer-guided assembly of inorganic nanoparticles. Chem. Soc. Rev. 49, 465–508 (2020).
doi: 10.1039/C9CS00725C
Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002).
doi: 10.1126/science.1069156
Balazs, A. C., Emrick, T. & Russell, T. P. Nanoparticle polymer composites: where two small worlds meet. Science 314, 1107–1110 (2006).
doi: 10.1126/science.1130557
Zhao, Y. et al. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat. Mater. 8, 979–985 (2009).
doi: 10.1038/nmat2565
Sanwaria, S. et al. Helical packing of nanoparticles confined in cylindrical domains of a self-assembled block copolymer structure. Angew. Chem. Int. Ed. 53, 9090–9093 (2014).
doi: 10.1002/anie.201403565
Lin, Y. et al. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434, 55–59 (2005).
doi: 10.1038/nature03310
Warren, S. C. et al. Ordered mesoporous materials from metal nanoparticle–block copolymer self-assembly. Science 320, 1748–1752 (2008).
doi: 10.1126/science.1159950
Haryono, A. & Binder, W. H. Controlled arrangement of nanoparticle arrays in block-copolymer domains. Small 2, 600–611 (2006).
doi: 10.1002/smll.200500474
Leffler, V. B. et al. Controlled assembly of block copolymer coated nanoparticles in 2D arrays. Angew. Chem. Int. Ed. 58, 8541–8545 (2019).
doi: 10.1002/anie.201901913
Lopes, W. A. & Jaeger, H. M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414, 735–738 (2001).
doi: 10.1038/414735a
Peng, Q., Tseng, Y.-C., Darling, S. B. & Elam, J. W. Nanoscopic patterned materials with tunable dimensions via atomic layer deposition on block copolymers. Adv. Mater. 22, 5129–5133 (2010).
doi: 10.1002/adma.201002465
Lunkenbein, T. et al. Direct synthesis of inverse hexagonally ordered diblock copolymer/polyoxometalate nanocomposite films. J. Am. Chem. Soc. 134, 12685–12692 (2012).
doi: 10.1021/ja304073t
Darling, S. B. Directing the self-assembly of block copolymers. Prog. Polym. Sci. 32, 1152–1204 (2007).
doi: 10.1016/j.progpolymsci.2007.05.004
Mai, Y. & Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 41, 5969–5985 (2012).
doi: 10.1039/c2cs35115c
Jain, S. & Bates, F. S. On the origins of morphological complexity in block copolymer surfactants. Science 300, 460–464 (2003).
doi: 10.1126/science.1082193
Tricard, S. et al. Chemical tuning of Coulomb blockade at room-temperature in ultra-small platinum nanoparticle self-assemblies. Mater. Horiz. 4, 487–492 (2017).
doi: 10.1039/C6MH00419A
Nie, Z., Petukhova, A. & Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5, 15–25 (2010).
doi: 10.1038/nnano.2009.453
Wei, J., Schaeffer, N. & Pileni, M.-P. Ligand exchange governs the crystal structures in binary nanocrystal superlattices. J. Am. Chem. Soc. 137, 14773–14784 (2015).
doi: 10.1021/jacs.5b09959
Bellomo, E. G., Wyrsta, M. D., Pakstis, L., Pochan, D. J. & Deming, T. J. Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nat. Mater. 3, 244–248 (2004).
doi: 10.1038/nmat1093
Bonduelle, C. Secondary structures of synthetic polypeptide polymers. Polym. Chem. 9, 1517–1529 (2018).
doi: 10.1039/C7PY01725A
Klok, H.-A., Langenwalter, J. F. & Lecommandoux, S. Self-assembly of peptide-based diblock oligomers. Macromolecules 33, 7819–7826 (2000).
doi: 10.1021/ma0009606
Schatz, C., Louguet, S., LeMeins, J. F. & Lecommandoux, S. Polysaccharide- block -polypeptide copolymer vesicles: towards synthetic viral capsids. Angew. Chem. Int. Ed. 48, 2572–2575 (2009).
doi: 10.1002/anie.200805895
Ruokolainen, J. et al. Supramolecular routes to hierarchical structures: comb-coil diblock copolymers organized with two length scales. Macromolecules 32, 1152–1158 (1999).
doi: 10.1021/ma980189n
Liang, L.-C., Lin, J.-M. & Lee, W.-Y. Benzene C–H activation by platinum(ii) complexes of bis(2-diphenylphosphinophenyl)amide. Chem. Commun. 19, 2462–2464 (2005).
doi: 10.1039/b501520k
Unger, Y. & Strassner, T. Platinum(II) complexes with amide-functionalized NHC ligands. J. Organomet. Chem. 713, 203–208 (2012).
doi: 10.1016/j.jorganchem.2012.05.019
Kohn, J. E. et al. Random-coil behavior and the dimensions of chemically unfolded proteins. Proc. Natl Acad. Sci. USA 101, 12491–12496 (2004).
doi: 10.1073/pnas.0403643101
Zhu, L., Wang, X., Li, J. & Wang, Y. Radius of gyration, mean span, and geometric shrinking factors of bridged polycyclic ring polymers. Macromol. Theory Simul. 25, 482–496 (2016).
doi: 10.1002/mats.201600033
Akcora, P. et al. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat. Mater. 8, 354–359 (2009).
doi: 10.1038/nmat2404
Mitov, M., Portet, C., Bourgerette, C., Snoeck, E. & Verelst, M. Long-range structuring of nanoparticles by mimicry of a cholesteric liquid crystal. Nat. Mater. 1, 229–231 (2002).
doi: 10.1038/nmat772
Gupta, M., Mohapatra, S. S., Dhara, S. & Pal, S. K. Supramolecular self-assembly of thiol functionalized pentaalkynylbenzene-decorated gold nanoparticles exhibiting a room temperature discotic nematic liquid crystal phase. J. Mater. Chem. C 6, 2303–2310 (2018).
doi: 10.1039/C7TC05444K
Dassenoy, F. et al. Platinum nanoparticles stabilized by CO and octanethiol ligands or polymers: FT-IR, NMR, HREM and WAXS studies. N. J. Chem. 22, 703–712 (1998).
doi: 10.1039/a709245h

Auteurs

Ghada Manai (G)

Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, Université de Toulouse, Toulouse, France.
Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France.

Hend Houimel (H)

Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, Université de Toulouse, Toulouse, France.

Mathilde Rigoulet (M)

Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, Université de Toulouse, Toulouse, France.

Angélique Gillet (A)

Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, Université de Toulouse, Toulouse, France.

Pier-Francesco Fazzini (PF)

Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, Université de Toulouse, Toulouse, France.

Alfonso Ibarra (A)

Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Zaragoza, Spain.

Stéphanie Balor (S)

Plateforme de Microscopie Électronique Intégrative, Centre de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France.

Pierre Roblin (P)

Laboratoire de Génie Chimique, Fédération Fermat, INPT, CNRS, Université de Toulouse, Toulouse, France.

Jérôme Esvan (J)

Institut Carnot - Centre Inter-universitaire de Recherche et d'Ingénierie des Matériaux, INP-ENSIACET, CNRS, Université de Toulouse, Toulouse, France.

Yannick Coppel (Y)

Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France.

Bruno Chaudret (B)

Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, Université de Toulouse, Toulouse, France.

Colin Bonduelle (C)

Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France. colin.bonduelle@enscbp.fr.
Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, Pessac, France. colin.bonduelle@enscbp.fr.

Simon Tricard (S)

Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, Université de Toulouse, Toulouse, France. tricard@insa-toulouse.fr.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Animals Huntington Disease Mitochondria Neurons Mice
Cobalt Azo Compounds Ferric Compounds Polyesters Photolysis
Animals Adjuvants, Immunologic Mice Antigen-Presenting Cells Antigen Presentation

Classifications MeSH