Prefrontal reinstatement of contextual task demand is predicted by separable hippocampal patterns.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
28 04 2020
28 04 2020
Historique:
received:
28
08
2019
accepted:
01
04
2020
entrez:
30
4
2020
pubmed:
30
4
2020
medline:
30
7
2020
Statut:
epublish
Résumé
Goal-directed behavior requires the representation of a task-set that defines the task-relevance of stimuli and guides stimulus-action mappings. Past experience provides one source of knowledge about likely task demands in the present, with learning enabling future predictions about anticipated demands. We examine whether spatial contexts serve to cue retrieval of associated task demands (e.g., context A and B probabilistically cue retrieval of task demands X and Y, respectively), and the role of the hippocampus and dorsolateral prefrontal cortex (dlPFC) in mediating such retrieval. Using 3D virtual environments, we induce context-task demand probabilistic associations and find that learned associations affect goal-directed behavior. Concurrent fMRI data reveal that, upon entering a context, differences between hippocampal representations of contexts (i.e., neural pattern separability) predict proactive retrieval of the probabilistically dominant associated task demand, which is reinstated in dlPFC. These findings reveal how hippocampal-prefrontal interactions support memory-guided cognitive control and adaptive behavior.
Identifiants
pubmed: 32345979
doi: 10.1038/s41467-020-15928-z
pii: 10.1038/s41467-020-15928-z
pmc: PMC7188806
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
2053Subventions
Organisme : NIA NIH HHS
ID : F32 AG056080
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG058111
Pays : United States
Références
Duncan, J. An adaptive coding model of neural function in prefrontal cortex. Nat. Rev. Neurosci. 2, 820–829 (2001).
pubmed: 11715058
doi: 10.1038/35097575
Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).
pubmed: 11283309
doi: 10.1146/annurev.neuro.24.1.167
Sakai, K. Task set and prefrontal cortex. Annu. Rev. Neurosci. 31, 219–245 (2008).
pubmed: 18558854
doi: 10.1146/annurev.neuro.31.060407.125642
Egner, T. The Wiley Handbook of Cognitive Control. (Wiley Blackwell, Southern Gate, Chichester, West Sussex, UK, 2017).
doi: 10.1002/9781118920497
Dobbins, I. G., Rice, H. J., Wagner, A. D. & Schacter, D. L. Memory orientation and success: separable neurocognitive components underlying episodic recognition. Neuropsychologia 41, 318–333 (2003).
pubmed: 12457757
doi: 10.1016/S0028-3932(02)00164-1
Stokes, M. G. et al. Dynamic coding for cognitive control in prefrontal cortex. Neuron 78, 364–375 (2013).
pubmed: 23562541
pmcid: 3898895
doi: 10.1016/j.neuron.2013.01.039
Sigala, N., Kusunoki, M., Nimmo-Smith, I., Gaffan, D. & Duncan, J. Hierarchical coding for sequential task events in the monkey prefrontal cortex. Proc. Natl Acad. Sci. USA 105, 11969–11974 (2008).
pubmed: 18689686
doi: 10.1073/pnas.0802569105
Schuck, N. W., Cai, M. B., Wilson, R. C. & Niv, Y. Human orbitofrontal cortex represents a cognitive map of state space. Neuron 91, 1402–1412 (2016).
pubmed: 27657452
pmcid: 5044873
doi: 10.1016/j.neuron.2016.08.019
Collins, A. G., Cavanagh, J. F. & Frank, M. J. Human EEG uncovers latent generalizable rule structure during learning. J. Neurosci. 34, 4677–4685 (2014).
pubmed: 24672013
pmcid: 3965790
doi: 10.1523/JNEUROSCI.3900-13.2014
Haynes, J. D. et al. Reading hidden intentions in the human brain. Curr. Biol. 17, 323–328 (2007).
pubmed: 17291759
doi: 10.1016/j.cub.2006.11.072
Waskom, M. L., Kumaran, D., Gordon, A. M., Rissman, J. & Wagner, A. D. Frontoparietal representations of task context support the flexible control of goal-directed cognition. J. Neurosci. 34, 10743–10755 (2014).
pubmed: 25100605
pmcid: 4200112
doi: 10.1523/JNEUROSCI.5282-13.2014
Wisniewski, D., Reverberi, C., Momennejad, I., Kahnt, T. & Haynes, J. D. The role of the parietal cortex in the representation of task-reward associations. J. Neurosci.35, 12355–12365 (2015).
pubmed: 26354905
pmcid: 6605393
doi: 10.1523/JNEUROSCI.4882-14.2015
Dobbins, I. G. & Wagner, A. D. Domain-general and domain-sensitive prefrontal mechanisms for recollecting events and detecting novelty. Cereb. Cortex 15, 1768–1778 (2005).
pubmed: 15728740
doi: 10.1093/cercor/bhi054
Chiu, Y. C. & Egner, T. Cortical and subcortical contributions to context-control learning. Neurosci. Biobehav. Rev. 99, 33–41 (2019).
pubmed: 30685484
pmcid: 6399056
doi: 10.1016/j.neubiorev.2019.01.019
Jiang, J., Beck, J., Heller, K. & Egner, T. An insula-frontostriatal network mediates flexible cognitive control by adaptively predicting changing control demands. Nat. Commun. 6, 8165 (2015).
pubmed: 26391305
pmcid: 4595591
doi: 10.1038/ncomms9165
Chiu, Y. C., Jiang, J. & Egner, T. The caudate nucleus mediates learning of stimulus-control state associations. J. Neurosci. 37, 1028–1038 (2017).
pubmed: 28123033
doi: 10.1523/JNEUROSCI.0778-16.2016
Eichenbaum, H. Memory: organization and control. Annu Rev. Psychol. 68, 19–45 (2017).
pubmed: 27687117
doi: 10.1146/annurev-psych-010416-044131
Hutchinson, J. B. & Turk-Browne, N. B. Memory-guided attention: control from multiple memory systems. Trends Cogn. Sci. 16, 576–579 (2012).
pubmed: 23141429
pmcid: 3728770
doi: 10.1016/j.tics.2012.10.003
Aly, M. & Turk-Browne, N. B. In The hippocampus from cells to systems, 369–403 (Springer, 2017).
Jiang, J., Brashier, N. M. & Egner, T. Memory meets control in hippocampal and striatal binding of stimuli, responses, and attentional control states. J. Neurosci.: Off. J. Soc. Neurosci. 35, 14885–14895 (2015).
doi: 10.1523/JNEUROSCI.2957-15.2015
Yassa, M. A. & Stark, C. E. Pattern separation in the hippocampus. Trends Neurosci. 34, 515–525 (2011).
pubmed: 21788086
pmcid: 3183227
doi: 10.1016/j.tins.2011.06.006
O’Reilly, R. C. & McClelland, J. L. Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4, 661–682 (1994).
pubmed: 7704110
doi: 10.1002/hipo.450040605
Jiang, J., Wagner, A. D. & Egner, T. Integrated externally and internally generated task predictions jointly guide cognitive control in prefrontal cortex. eLife 7, e39497 (2018).
Waskom, M. L., Frank, M. C. & Wagner, A. D. Adaptive engagement of cognitive control in context-dependent decision making. Cereb. cortex 27, 1270–1284 (2017).
pubmed: 26733531
Genovese, C. R., Lazar, N. A. & Nichols, T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15, 870–878 (2002).
pubmed: 11906227
doi: 10.1006/nimg.2001.1037
Reverberi, C., Gorgen, K. & Haynes, J. D. Compositionality of rule representations in human prefrontal cortex. Cereb. cortex 22, 1237–1246 (2012).
pubmed: 21817092
doi: 10.1093/cercor/bhr200
Reverberi, C., Gorgen, K. & Haynes, J. D. Distributed representations of rule identity and rule order in human frontal cortex and striatum. J. Neurosci.: Off. J. Soc. Neurosci. 32, 17420–17430 (2012).
doi: 10.1523/JNEUROSCI.2344-12.2012
Pischedda, D., Gorgen, K., Haynes, J. D. & Reverberi, C. Neural representations of hierarchical rule sets: the human control system represents rules irrespective of the hierarchical level to which they belong. J. Neurosci. 37, 12281–12296 (2017).
pubmed: 29114072
pmcid: 6596826
doi: 10.1523/JNEUROSCI.3088-16.2017
Bode, S. & Haynes, J. D. Decoding sequential stages of task preparation in the human brain. NeuroImage 45, 606–613 (2009).
pubmed: 19111624
doi: 10.1016/j.neuroimage.2008.11.031
Momennejad, I. & Haynes, J. D. Encoding of prospective tasks in the human prefrontal cortex under varying task loads. J. Neurosci. 33, 17342–17349 (2013).
pubmed: 24174667
pmcid: 6618369
doi: 10.1523/JNEUROSCI.0492-13.2013
Wisniewski, D., Reverberi, C., Tusche, A. & Haynes, J. D. The neural representation of voluntary task-set selection in dynamic environments. Cereb. cortex 25, 4715–4726 (2015).
pubmed: 25037922
doi: 10.1093/cercor/bhu155
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
pubmed: 27437579
pmcid: 4990127
doi: 10.1038/nature18933
Cai, M. B., Schuck, N. W., Pillow, J. W. & Niv, Y. Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias. PLoS Comput. Biol. 15, e1006299 (2019).
pubmed: 31125335
pmcid: 6553797
doi: 10.1371/journal.pcbi.1006299
Gordon, A. M., Rissman, J., Kiani, R. & Wagner, A. D. Cortical reinstatement mediates the relationship between content-specific encoding activity and subsequent recollection decisions. Cereb. Cortex 24, 3350–3364 (2014).
pubmed: 23921785
doi: 10.1093/cercor/bht194
Gagnon, S. A., Waskom, M. L., Brown, T. I. & Wagner, A. D. Stress impairs episodic retrieval by disrupting hippocampal and cortical mechanisms of remembering. Cereb. Cortex 29, 2947–2964 (2019).
pubmed: 30060134
doi: 10.1093/cercor/bhy162
Tanaka, K. Z. et al. Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84, 347–354 (2014).
pubmed: 25308331
doi: 10.1016/j.neuron.2014.09.037
pmcid: 25308331
Kuhl, B. A. & Chun, M. M. Successful remembering elicits event-specific activity patterns in lateral parietal cortex. J. Neurosci. 34, 8051–8060 (2014).
pubmed: 24899726
pmcid: 4044259
doi: 10.1523/JNEUROSCI.4328-13.2014
Ritchey, M., Wing, E. A., LaBar, K. S. & Cabeza, R. Neural similarity between encoding and retrieval is related to memory via hippocampal interactions. Cereb. cortex 23, 2818–2828 (2013).
pubmed: 22967731
doi: 10.1093/cercor/bhs258
pmcid: 22967731
Favila, S. E., Chanales, A. J. & Kuhl, B. A. Experience-dependent hippocampal pattern differentiation prevents interference during subsequent learning. Nat. Commun. 7, 11066 (2016).
pubmed: 27925613
pmcid: 4820837
doi: 10.1038/ncomms11066
Ballard, I. C., Wagner, A. D. & McClure, S. M. Hippocampal pattern separation supports reinforcement learning. Nat. Commun. 10, 1073 (2019).
pubmed: 30842581
pmcid: 6403348
doi: 10.1038/s41467-019-08998-1
Chanales, A. J. H., Oza, A., Favila, S. E. & Kuhl, B. A. Overlap among spatial memories triggers repulsion of hippocampal representations. Curr. Biol. 27, 2307–2317 e2305 (2017).
pubmed: 28736170
pmcid: 5576038
doi: 10.1016/j.cub.2017.06.057
Dreisbach, G., Haider, H. & Kluwe, R. H. Preparatory processes in the task-switching paradigm: evidence from the use of probability cues. J. Exp. Psychol. Learn. Mem. Cogn. 28, 468–483 (2002).
pubmed: 12018499
doi: 10.1037/0278-7393.28.3.468
Xiao, X. et al. Transformed Neural Pattern Reinstatement during Episodic Memory Retrieval. J. Neurosci. 37, 2986–2998 (2017).
pubmed: 28202612
pmcid: 6596730
doi: 10.1523/JNEUROSCI.2324-16.2017
Braver, T. S. The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn. Sci. 16, 106–113 (2012).
pubmed: 22245618
pmcid: 3289517
doi: 10.1016/j.tics.2011.12.010
Hindy, N. C., Ng, F. Y. & Turk-Browne, N. B. Linking pattern completion in the hippocampus to predictive coding in visual cortex. Nat. Neurosci. 19, 665–667 (2016).
pubmed: 27065363
pmcid: 4948994
doi: 10.1038/nn.4284
Hindy, N. C., Avery, E. W. & Turk-Browne, N. B. Hippocampal-neocortical interactions sharpen over time for predictive actions. Nat. Commun. 10, 3989 (2019).
pubmed: 31488845
pmcid: 6728336
doi: 10.1038/s41467-019-12016-9
Ritvo, V. J. H., Turk-Browne, N. B. & Norman, K. A. Nonmonotonic plasticity: how memory retrieval drives learning. Trends Cogn. Sci. 23, 726–742 (2019).
pubmed: 31358438
doi: 10.1016/j.tics.2019.06.007
Kumaran, D. & McClelland, J. L. Generalization through the recurrent interaction of episodic memories: a model of the hippocampal system. Psychological Rev. 119, 573–616 (2012).
doi: 10.1037/a0028681
Koster, R. et al. Big-loop recurrence within the hippocampal system supports integration of information across episodes. Neuron 99, 1342–1354 e1346 (2018).
pubmed: 30236285
doi: 10.1016/j.neuron.2018.08.009
Shohamy, D. & Wagner, A. D. Integrating memories in the human brain: hippocampal-midbrain encoding of overlapping events. Neuron 60, 378–389 (2008).
pubmed: 18957228
pmcid: 2628634
doi: 10.1016/j.neuron.2008.09.023
Brown, T. I. et al. Prospective representation of navigational goals in the human hippocampus. Science 352, 1323–1326 (2016).
pubmed: 27284194
doi: 10.1126/science.aaf0784
Collins, A. G. & Frank, M. J. Cognitive control over learning: creating, clustering, and generalizing task-set structure. Psychological Rev. 120, 190–229 (2013).
doi: 10.1037/a0030852
Cohen, N. J. & Eichenbaum, H. Memory, Amnesia, and the Hippocampal System (MIT Press, Cambridge, Mass., 1993).
Behrens, T. E., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–1221 (2007).
pubmed: 17676057
doi: 10.1038/nn1954
Danielmeier, C. & Ullsperger, M. Post-error adjustments. Front. Psychol. 2, 233 (2011).
pubmed: 21954390
pmcid: 3173829
doi: 10.3389/fpsyg.2011.00233
Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).
pubmed: 30532080
doi: 10.1038/s41592-018-0235-4
Esteban, O. et al. FMRIPrep 1.1.2. Software Zenodo (2018).
Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front Neuroinform 5, 13 (2011).
pubmed: 21897815
pmcid: 3159964
doi: 10.3389/fninf.2011.00013
Gorgolewski, K. J. et al. Nipype. Software Zenodo (2018).
Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med Imaging 29, 1310–1320 (2010).
pubmed: 20378467
pmcid: 3071855
doi: 10.1109/TMI.2010.2046908
Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999).
pubmed: 9931268
doi: 10.1006/nimg.1998.0395
Klein, A. et al. Mindboggling morphometry of human brains. PLoS Comput. Biol. 13, e1005350 (2017).
pubmed: 28231282
pmcid: 5322885
doi: 10.1371/journal.pcbi.1005350
Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C. R. & Collins, D. L. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47, S102 (2009).
Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 12, 26–41 (2008).
pubmed: 17659998
doi: 10.1016/j.media.2007.06.004
Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med Imaging 20, 45–57 (2001).
pubmed: 11293691
doi: 10.1109/42.906424
Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002).
pubmed: 12377157
doi: 10.1006/nimg.2002.1132
Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48, 63–72 (2009).
pubmed: 19573611
pmcid: 2733527
doi: 10.1016/j.neuroimage.2009.06.060
Power, J. D., et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84, 320–341 (2014).
Lanczos, C. Evaluation of Noisy Data. J. Soc. Ind. Appl. Math. Ser. B Numer. Anal. 1, 76–85 (1964).
doi: 10.1137/0701007
Walther, A. et al. Reliability of dissimilarity measures for multi-voxel pattern analysis. NeuroImage 137, 188–200 (2016).
pubmed: 26707889
doi: 10.1016/j.neuroimage.2015.12.012