Prefrontal reinstatement of contextual task demand is predicted by separable hippocampal patterns.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
28 04 2020
Historique:
received: 28 08 2019
accepted: 01 04 2020
entrez: 30 4 2020
pubmed: 30 4 2020
medline: 30 7 2020
Statut: epublish

Résumé

Goal-directed behavior requires the representation of a task-set that defines the task-relevance of stimuli and guides stimulus-action mappings. Past experience provides one source of knowledge about likely task demands in the present, with learning enabling future predictions about anticipated demands. We examine whether spatial contexts serve to cue retrieval of associated task demands (e.g., context A and B probabilistically cue retrieval of task demands X and Y, respectively), and the role of the hippocampus and dorsolateral prefrontal cortex (dlPFC) in mediating such retrieval. Using 3D virtual environments, we induce context-task demand probabilistic associations and find that learned associations affect goal-directed behavior. Concurrent fMRI data reveal that, upon entering a context, differences between hippocampal representations of contexts (i.e., neural pattern separability) predict proactive retrieval of the probabilistically dominant associated task demand, which is reinstated in dlPFC. These findings reveal how hippocampal-prefrontal interactions support memory-guided cognitive control and adaptive behavior.

Identifiants

pubmed: 32345979
doi: 10.1038/s41467-020-15928-z
pii: 10.1038/s41467-020-15928-z
pmc: PMC7188806
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

2053

Subventions

Organisme : NIA NIH HHS
ID : F32 AG056080
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG058111
Pays : United States

Références

Duncan, J. An adaptive coding model of neural function in prefrontal cortex. Nat. Rev. Neurosci. 2, 820–829 (2001).
pubmed: 11715058 doi: 10.1038/35097575
Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).
pubmed: 11283309 doi: 10.1146/annurev.neuro.24.1.167
Sakai, K. Task set and prefrontal cortex. Annu. Rev. Neurosci. 31, 219–245 (2008).
pubmed: 18558854 doi: 10.1146/annurev.neuro.31.060407.125642
Egner, T. The Wiley Handbook of Cognitive Control. (Wiley Blackwell, Southern Gate, Chichester, West Sussex, UK, 2017).
doi: 10.1002/9781118920497
Dobbins, I. G., Rice, H. J., Wagner, A. D. & Schacter, D. L. Memory orientation and success: separable neurocognitive components underlying episodic recognition. Neuropsychologia 41, 318–333 (2003).
pubmed: 12457757 doi: 10.1016/S0028-3932(02)00164-1
Stokes, M. G. et al. Dynamic coding for cognitive control in prefrontal cortex. Neuron 78, 364–375 (2013).
pubmed: 23562541 pmcid: 3898895 doi: 10.1016/j.neuron.2013.01.039
Sigala, N., Kusunoki, M., Nimmo-Smith, I., Gaffan, D. & Duncan, J. Hierarchical coding for sequential task events in the monkey prefrontal cortex. Proc. Natl Acad. Sci. USA 105, 11969–11974 (2008).
pubmed: 18689686 doi: 10.1073/pnas.0802569105
Schuck, N. W., Cai, M. B., Wilson, R. C. & Niv, Y. Human orbitofrontal cortex represents a cognitive map of state space. Neuron 91, 1402–1412 (2016).
pubmed: 27657452 pmcid: 5044873 doi: 10.1016/j.neuron.2016.08.019
Collins, A. G., Cavanagh, J. F. & Frank, M. J. Human EEG uncovers latent generalizable rule structure during learning. J. Neurosci. 34, 4677–4685 (2014).
pubmed: 24672013 pmcid: 3965790 doi: 10.1523/JNEUROSCI.3900-13.2014
Haynes, J. D. et al. Reading hidden intentions in the human brain. Curr. Biol. 17, 323–328 (2007).
pubmed: 17291759 doi: 10.1016/j.cub.2006.11.072
Waskom, M. L., Kumaran, D., Gordon, A. M., Rissman, J. & Wagner, A. D. Frontoparietal representations of task context support the flexible control of goal-directed cognition. J. Neurosci. 34, 10743–10755 (2014).
pubmed: 25100605 pmcid: 4200112 doi: 10.1523/JNEUROSCI.5282-13.2014
Wisniewski, D., Reverberi, C., Momennejad, I., Kahnt, T. & Haynes, J. D. The role of the parietal cortex in the representation of task-reward associations. J. Neurosci.35, 12355–12365 (2015).
pubmed: 26354905 pmcid: 6605393 doi: 10.1523/JNEUROSCI.4882-14.2015
Dobbins, I. G. & Wagner, A. D. Domain-general and domain-sensitive prefrontal mechanisms for recollecting events and detecting novelty. Cereb. Cortex 15, 1768–1778 (2005).
pubmed: 15728740 doi: 10.1093/cercor/bhi054
Chiu, Y. C. & Egner, T. Cortical and subcortical contributions to context-control learning. Neurosci. Biobehav. Rev. 99, 33–41 (2019).
pubmed: 30685484 pmcid: 6399056 doi: 10.1016/j.neubiorev.2019.01.019
Jiang, J., Beck, J., Heller, K. & Egner, T. An insula-frontostriatal network mediates flexible cognitive control by adaptively predicting changing control demands. Nat. Commun. 6, 8165 (2015).
pubmed: 26391305 pmcid: 4595591 doi: 10.1038/ncomms9165
Chiu, Y. C., Jiang, J. & Egner, T. The caudate nucleus mediates learning of stimulus-control state associations. J. Neurosci. 37, 1028–1038 (2017).
pubmed: 28123033 doi: 10.1523/JNEUROSCI.0778-16.2016
Eichenbaum, H. Memory: organization and control. Annu Rev. Psychol. 68, 19–45 (2017).
pubmed: 27687117 doi: 10.1146/annurev-psych-010416-044131
Hutchinson, J. B. & Turk-Browne, N. B. Memory-guided attention: control from multiple memory systems. Trends Cogn. Sci. 16, 576–579 (2012).
pubmed: 23141429 pmcid: 3728770 doi: 10.1016/j.tics.2012.10.003
Aly, M. & Turk-Browne, N. B. In The hippocampus from cells to systems, 369–403 (Springer, 2017).
Jiang, J., Brashier, N. M. & Egner, T. Memory meets control in hippocampal and striatal binding of stimuli, responses, and attentional control states. J. Neurosci.: Off. J. Soc. Neurosci. 35, 14885–14895 (2015).
doi: 10.1523/JNEUROSCI.2957-15.2015
Yassa, M. A. & Stark, C. E. Pattern separation in the hippocampus. Trends Neurosci. 34, 515–525 (2011).
pubmed: 21788086 pmcid: 3183227 doi: 10.1016/j.tins.2011.06.006
O’Reilly, R. C. & McClelland, J. L. Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4, 661–682 (1994).
pubmed: 7704110 doi: 10.1002/hipo.450040605
Jiang, J., Wagner, A. D. & Egner, T. Integrated externally and internally generated task predictions jointly guide cognitive control in prefrontal cortex. eLife 7, e39497 (2018).
Waskom, M. L., Frank, M. C. & Wagner, A. D. Adaptive engagement of cognitive control in context-dependent decision making. Cereb. cortex 27, 1270–1284 (2017).
pubmed: 26733531
Genovese, C. R., Lazar, N. A. & Nichols, T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15, 870–878 (2002).
pubmed: 11906227 doi: 10.1006/nimg.2001.1037
Reverberi, C., Gorgen, K. & Haynes, J. D. Compositionality of rule representations in human prefrontal cortex. Cereb. cortex 22, 1237–1246 (2012).
pubmed: 21817092 doi: 10.1093/cercor/bhr200
Reverberi, C., Gorgen, K. & Haynes, J. D. Distributed representations of rule identity and rule order in human frontal cortex and striatum. J. Neurosci.: Off. J. Soc. Neurosci. 32, 17420–17430 (2012).
doi: 10.1523/JNEUROSCI.2344-12.2012
Pischedda, D., Gorgen, K., Haynes, J. D. & Reverberi, C. Neural representations of hierarchical rule sets: the human control system represents rules irrespective of the hierarchical level to which they belong. J. Neurosci. 37, 12281–12296 (2017).
pubmed: 29114072 pmcid: 6596826 doi: 10.1523/JNEUROSCI.3088-16.2017
Bode, S. & Haynes, J. D. Decoding sequential stages of task preparation in the human brain. NeuroImage 45, 606–613 (2009).
pubmed: 19111624 doi: 10.1016/j.neuroimage.2008.11.031
Momennejad, I. & Haynes, J. D. Encoding of prospective tasks in the human prefrontal cortex under varying task loads. J. Neurosci. 33, 17342–17349 (2013).
pubmed: 24174667 pmcid: 6618369 doi: 10.1523/JNEUROSCI.0492-13.2013
Wisniewski, D., Reverberi, C., Tusche, A. & Haynes, J. D. The neural representation of voluntary task-set selection in dynamic environments. Cereb. cortex 25, 4715–4726 (2015).
pubmed: 25037922 doi: 10.1093/cercor/bhu155
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
pubmed: 27437579 pmcid: 4990127 doi: 10.1038/nature18933
Cai, M. B., Schuck, N. W., Pillow, J. W. & Niv, Y. Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias. PLoS Comput. Biol. 15, e1006299 (2019).
pubmed: 31125335 pmcid: 6553797 doi: 10.1371/journal.pcbi.1006299
Gordon, A. M., Rissman, J., Kiani, R. & Wagner, A. D. Cortical reinstatement mediates the relationship between content-specific encoding activity and subsequent recollection decisions. Cereb. Cortex 24, 3350–3364 (2014).
pubmed: 23921785 doi: 10.1093/cercor/bht194
Gagnon, S. A., Waskom, M. L., Brown, T. I. & Wagner, A. D. Stress impairs episodic retrieval by disrupting hippocampal and cortical mechanisms of remembering. Cereb. Cortex 29, 2947–2964 (2019).
pubmed: 30060134 doi: 10.1093/cercor/bhy162
Tanaka, K. Z. et al. Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84, 347–354 (2014).
pubmed: 25308331 doi: 10.1016/j.neuron.2014.09.037 pmcid: 25308331
Kuhl, B. A. & Chun, M. M. Successful remembering elicits event-specific activity patterns in lateral parietal cortex. J. Neurosci. 34, 8051–8060 (2014).
pubmed: 24899726 pmcid: 4044259 doi: 10.1523/JNEUROSCI.4328-13.2014
Ritchey, M., Wing, E. A., LaBar, K. S. & Cabeza, R. Neural similarity between encoding and retrieval is related to memory via hippocampal interactions. Cereb. cortex 23, 2818–2828 (2013).
pubmed: 22967731 doi: 10.1093/cercor/bhs258 pmcid: 22967731
Favila, S. E., Chanales, A. J. & Kuhl, B. A. Experience-dependent hippocampal pattern differentiation prevents interference during subsequent learning. Nat. Commun. 7, 11066 (2016).
pubmed: 27925613 pmcid: 4820837 doi: 10.1038/ncomms11066
Ballard, I. C., Wagner, A. D. & McClure, S. M. Hippocampal pattern separation supports reinforcement learning. Nat. Commun. 10, 1073 (2019).
pubmed: 30842581 pmcid: 6403348 doi: 10.1038/s41467-019-08998-1
Chanales, A. J. H., Oza, A., Favila, S. E. & Kuhl, B. A. Overlap among spatial memories triggers repulsion of hippocampal representations. Curr. Biol. 27, 2307–2317 e2305 (2017).
pubmed: 28736170 pmcid: 5576038 doi: 10.1016/j.cub.2017.06.057
Dreisbach, G., Haider, H. & Kluwe, R. H. Preparatory processes in the task-switching paradigm: evidence from the use of probability cues. J. Exp. Psychol. Learn. Mem. Cogn. 28, 468–483 (2002).
pubmed: 12018499 doi: 10.1037/0278-7393.28.3.468
Xiao, X. et al. Transformed Neural Pattern Reinstatement during Episodic Memory Retrieval. J. Neurosci. 37, 2986–2998 (2017).
pubmed: 28202612 pmcid: 6596730 doi: 10.1523/JNEUROSCI.2324-16.2017
Braver, T. S. The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn. Sci. 16, 106–113 (2012).
pubmed: 22245618 pmcid: 3289517 doi: 10.1016/j.tics.2011.12.010
Hindy, N. C., Ng, F. Y. & Turk-Browne, N. B. Linking pattern completion in the hippocampus to predictive coding in visual cortex. Nat. Neurosci. 19, 665–667 (2016).
pubmed: 27065363 pmcid: 4948994 doi: 10.1038/nn.4284
Hindy, N. C., Avery, E. W. & Turk-Browne, N. B. Hippocampal-neocortical interactions sharpen over time for predictive actions. Nat. Commun. 10, 3989 (2019).
pubmed: 31488845 pmcid: 6728336 doi: 10.1038/s41467-019-12016-9
Ritvo, V. J. H., Turk-Browne, N. B. & Norman, K. A. Nonmonotonic plasticity: how memory retrieval drives learning. Trends Cogn. Sci. 23, 726–742 (2019).
pubmed: 31358438 doi: 10.1016/j.tics.2019.06.007
Kumaran, D. & McClelland, J. L. Generalization through the recurrent interaction of episodic memories: a model of the hippocampal system. Psychological Rev. 119, 573–616 (2012).
doi: 10.1037/a0028681
Koster, R. et al. Big-loop recurrence within the hippocampal system supports integration of information across episodes. Neuron 99, 1342–1354 e1346 (2018).
pubmed: 30236285 doi: 10.1016/j.neuron.2018.08.009
Shohamy, D. & Wagner, A. D. Integrating memories in the human brain: hippocampal-midbrain encoding of overlapping events. Neuron 60, 378–389 (2008).
pubmed: 18957228 pmcid: 2628634 doi: 10.1016/j.neuron.2008.09.023
Brown, T. I. et al. Prospective representation of navigational goals in the human hippocampus. Science 352, 1323–1326 (2016).
pubmed: 27284194 doi: 10.1126/science.aaf0784
Collins, A. G. & Frank, M. J. Cognitive control over learning: creating, clustering, and generalizing task-set structure. Psychological Rev. 120, 190–229 (2013).
doi: 10.1037/a0030852
Cohen, N. J. & Eichenbaum, H. Memory, Amnesia, and the Hippocampal System (MIT Press, Cambridge, Mass., 1993).
Behrens, T. E., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–1221 (2007).
pubmed: 17676057 doi: 10.1038/nn1954
Danielmeier, C. & Ullsperger, M. Post-error adjustments. Front. Psychol. 2, 233 (2011).
pubmed: 21954390 pmcid: 3173829 doi: 10.3389/fpsyg.2011.00233
Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).
pubmed: 30532080 doi: 10.1038/s41592-018-0235-4
Esteban, O. et al. FMRIPrep 1.1.2. Software Zenodo (2018).
Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front Neuroinform 5, 13 (2011).
pubmed: 21897815 pmcid: 3159964 doi: 10.3389/fninf.2011.00013
Gorgolewski, K. J. et al. Nipype. Software Zenodo (2018).
Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med Imaging 29, 1310–1320 (2010).
pubmed: 20378467 pmcid: 3071855 doi: 10.1109/TMI.2010.2046908
Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999).
pubmed: 9931268 doi: 10.1006/nimg.1998.0395
Klein, A. et al. Mindboggling morphometry of human brains. PLoS Comput. Biol. 13, e1005350 (2017).
pubmed: 28231282 pmcid: 5322885 doi: 10.1371/journal.pcbi.1005350
Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C. R. & Collins, D. L. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47, S102 (2009).
Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 12, 26–41 (2008).
pubmed: 17659998 doi: 10.1016/j.media.2007.06.004
Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med Imaging 20, 45–57 (2001).
pubmed: 11293691 doi: 10.1109/42.906424
Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002).
pubmed: 12377157 doi: 10.1006/nimg.2002.1132
Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48, 63–72 (2009).
pubmed: 19573611 pmcid: 2733527 doi: 10.1016/j.neuroimage.2009.06.060
Power, J. D., et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84, 320–341 (2014).
Lanczos, C. Evaluation of Noisy Data. J. Soc. Ind. Appl. Math. Ser. B Numer. Anal. 1, 76–85 (1964).
doi: 10.1137/0701007
Walther, A. et al. Reliability of dissimilarity measures for multi-voxel pattern analysis. NeuroImage 137, 188–200 (2016).
pubmed: 26707889 doi: 10.1016/j.neuroimage.2015.12.012

Auteurs

Jiefeng Jiang (J)

Department of Psychology, Stanford University, Stanford, CA, 94305, USA. jiefeng.jiang@stanford.edu.

Shao-Fang Wang (SF)

Department of Psychology, Stanford University, Stanford, CA, 94305, USA.

Wanjia Guo (W)

Psychology Department, University of Oregon, Eugene, OR, 97401, USA.

Corey Fernandez (C)

Neuroscience Program, Stanford University, Stanford, CA, 94305, USA.

Anthony D Wagner (AD)

Department of Psychology, Stanford University, Stanford, CA, 94305, USA.
Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH