Central control of energy balance by amylin and calcitonin receptor agonists and their potential for treatment of metabolic diseases.
amylin
amylin receptor agonists
calcitonin receptor agonists
energy balance
metabolic disease
salmon calcitonin
Journal
Basic & clinical pharmacology & toxicology
ISSN: 1742-7843
Titre abrégé: Basic Clin Pharmacol Toxicol
Pays: England
ID NLM: 101208422
Informations de publication
Date de publication:
Sep 2020
Sep 2020
Historique:
received:
27
03
2020
revised:
28
04
2020
accepted:
28
04
2020
pubmed:
5
5
2020
medline:
18
5
2021
entrez:
5
5
2020
Statut:
ppublish
Résumé
The prevalence of obesity and associated comorbidities such as type 2 diabetes and cardiovascular disease is increasing globally. Body-weight loss reduces the risk of morbidity and mortality in obese individuals, and thus, pharmacotherapies that induce weight loss can be of great value in improving the health and well-being of people living with obesity. Treatment with amylin and calcitonin receptor agonists reduces food intake and induces weight loss in several animal models, and a number of companies have started clinical testing for peptide analogues in the treatment of obesity and/or type 2 diabetes. Studies predominantly performed in rodent models show that amylin and the dual amylin/calcitonin receptor agonist salmon calcitonin achieve their metabolic effects by engaging areas in the brain associated with regulating homeostatic energy balance. In particular, signalling via neuronal circuits in the caudal hindbrain and the hypothalamus is implicated in mediating effects on food intake and energy expenditure. We review the current literature investigating the interaction of amylin/calcitonin receptor agonists with neurocircuits that induce the observed metabolic effects. Moreover, the status of drug development of amylin and calcitonin receptor agonists for the treatment of metabolic diseases is summarized.
Substances chimiques
Amylin Receptor Agonists
0
Islet Amyloid Polypeptide
0
Leptin
0
Receptors, Calcitonin
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
163-177Subventions
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : SNF 31003 A_175458
Organisme : Novo Nordisk A/S
Organisme : LifePharm Centre for In Vivo Pharmacology
Informations de copyright
© 2020 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Références
Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001;104:531-543.
World Health Organization. Global health observatory (GHO) data - overweight and obesity. 2018 [updated 2018; cited 2018 18 Oct]; http://www.who.int/gho/ncd/risk_factors/overweight_obesity/obesity_adults/en/
Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of obesity. N Engl J Med. 2017;376:254-266.
Ochner CN, Barrios DM, Lee CD, Pi-Sunyer FX. Biological mechanisms that promote weight regain following weight loss in obese humans. Physiol Behav. 2013;120:106-113.
Gautron L, Elmquist JK, Williams KW. Neural control of energy balance: Translating circuits to therapies. Cell. 2015;161:133-145.
Gao Q, Horvath TL. Neuronal control of energy homeostasis. FEBS Lett. 2008;582:132-141.
Berthoud HR. Vagal and hormonal gut-brain communication: From satiation to satisfaction. Neurogastroenterol Motil. 2008;20:64-72.
Ahima RS, Antwi DA. Brain regulation of appetite and satiety. Endocrinol Metab Clin North Am. 2008;37:811.
Zheng HY, Berthoud HR. Neural systems controlling the drive to eat: Mind versus metabolism. Physiology. 2008;23:75-83.
Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: Pharmacology, physiology, and clinical potential. Pharmacol Rev. 2015;67:564-600.
Hay DL, Garelja ML, Poyner DR, Walker CS. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR review 25. Br J Pharmacol. 2018;175:3-17.
PR Newswire. Lilly announces strategic collaboration with keybioscience AG. 2017 [updated 2017; cited 2018 31 dec]; https://www.prnewswire.com/news-releases/lilly-announces-strategic-collaboration-with-keybioscience-ag-300470564.html
Novo Nordisk A/S. Investor presentation full year 2016. 2017 [updated 2017; cited 2018 31 Dec]; https://www.novonordisk.com/content/dam/Denmark/HQ/investors/irmaterial/investor_presentations/2017/20170202_Q4%20Roadshow%20presentation.pdf
Kusakabe T, Ebihara K, Sakai T, et al. Amylin improves the effect of leptin on insulin sensitivity in leptin-resistant diet-induced obese mice. Am J Physiol Endocrinol Metab. 2012;302:E924-E931.
Trevaskis JL, Turek VF, Griffin PS, Wittmer C, Parkes DG, Roth JD. Multi-hormonal weight loss combinations in diet-induced obese rats: Therapeutic potential of cholecystokinin? Physiol Behav. 2010;100:187-195.
Roth JD, Coffey T, Jodka CM, et al. Combination therapy with amylin and peptide YY 3-36 in obese rodents: Anorexigenic synergy and weight loss additivity. Endocrinology 2007;148:6054-6061.
Clapper JR, Athanacio J, Wittmer C, et al. Effects of amylin and bupropion/naltrexone on food intake and body weight are interactive in rodent models. Eur J Pharmacol. 2013;698:292-298.
Mack CM, Soares CJ, Wilson JK, et al. Davalintide (AC2307), a novel amylin-mimetic peptide: Enhanced pharmacological properties over native amylin to reduce food intake and body weight. Int J Obes. 2010;34:385-395.
Roth JD, Hughes H, Kendall E, Baron AD, Anderson CM. Antiobesity effects of the beta-cell hormone amylin in diet-induced obese rats: Effects on food intake, body weight, composition, energy expenditure, and gene expression. Endocrinology 2006;147:5855-5864.
Isaksson B, Wang F, Permert J, et al. Chronically administered islet amyloid polypeptide in rats serves as an adiposity inhibitor and regulates energy homeostasis. Pancreatology 2005;5:29-36.
Mack C, Wilson J, Athanacio J, et al. Pharmacological actions of the peptide hormone amylin in the long-term regulation of food intake, food preference, and body weight. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1855-R1863.
Feigh M, Henriksen K, Andreassen KV, et al. A novel oral form of salmon calcitonin improves glucose homeostasis and reduces body weight in diet-induced obese rats. Diabetes Obes Metab. 2011;13:911-920.
Andreassen KV, Feigh M, Hjuler ST, et al. A novel oral dual amylin and calcitonin receptor agonist (KBP-042) exerts antiobesity and antidiabetic effects in rats. Am J Physiol Endocrinol Metab. 2014;307:E24-E33.
Masi L, Brandi ML. Calcitonin and calcitonin receptors. Clin Cases Miner Bone Metab. 2007;4:117-122.
Hay DL, Christopoulos G, Christopoulos A, Poyner DR, Sexton PM. Pharmacological discrimination of calcitonin receptor: Receptor activity-modifying protein complexes. Mol Pharmacol. 2005;67:1655-1665.
Betsholtz C, Svensson V, Rorsman F, et al. Islet amyloid polypeptide (IAPP): cDNA cloning and identification of an amyloidogenic region associated with the species-specific occurrence of age-related diabetes mellitus. Exp Cell Res. 1989;183:484-493.
Mosselman S, Höppener J, Lips C, Jansz H. The complete islet amyloid polypeptide precursor is encoded by two exons. FEBS Lett. 1989;247:154-158.
Sanke T, Bell G, Sample C, Rubenstein A, Steiner D. An islet amyloid peptide is derived from an 89-amino acid precursor by proteolytic processing. J Biol Chem. 1988;263:17243-17246.
Marzban L, Trigo-Gonzalez G, Zhu X, et al. Role of β-cell prohormone convertase (PC) 1/3 in processing of pro-islet amyloid polypeptide. Diabetes 2004;53:141-148.
Ogawa A, Harris V, McCorkle SK, Unger RH, Luskey KL. Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment. J Clin Invest. 1990;85:973-976.
Kanatsuka A, Makino H, Ohsawa H, et al. Secretion of islet amyloid polypeptide in response to glucose. FEBS Lett. 1989;259:199-201.
Qi D, Cai K, Wang O, et al. Fatty acids induce amylin expression and secretion by pancreatic β-cells. Am J Physiol Endocrinol Metab. 2010;298:E99-E107.
Butler PC, Chou J, Carter WB, et al. Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans. Diabetes 1990;39:752-756.
Lutz TA. Amylinergic control of food intake. Physiol Behav. 2006;89:465-471.
Boyle CN, Rossier MM, Lutz TA. Influence of high-fat feeding, diet-induced obesity, and hyperamylinemia on the sensitivity to acute amylin. Physiol Behav. 2011;104:20-28.
Nishimura S, Sanke T, Machida K, et al. Lack of effect of islet amyloid polypeptide on hepatic glucose output in the in situ-perfused rat liver. Metabolism 1992;41:431-434.
Vine W, Smith P, LaChappell R, Blase E, Lumpkin R, Young A. Nephrectomy decreases amylin and pramlintide clearance in rats. Horm Metab Res. 1998;30:514-517.
Lutz TA, Geary N, Szabady MM, Delprete E, Scharrer E. Amylin decreases meal size in rats. Physiol Behav. 1995;58:1197-1202.
Mollet A, Gilg S, Riediger T, Lutz TA. Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol Behav. 2004;81:149-155.
Lutz T, Mollet A, Rushing P, Riediger T, Scharrer E. The anorectic effect of a chronic peripheral infusion of amylin is abolished in area postrema/nucleus of the solitary tract (AP/NTS) lesioned rats. Int J Obes. 2001;25:1005.
Lutz TA, Delprete E, Scharrer E. Reduction of food intake in rats by intraperitoneal injection of low doses of amylin. Physiol Behav. 1994;55:891-895.
Asmar M, Bache M, Knop FK, Madsbad S, Holst JJ. Do the actions of glucagon-like peptide-1 on gastric emptying, appetite, and food intake involve release of amylin in humans? J Clin Endocrinol Metab. 2010;95:2367-2375.
Arnelo U, Permert J, Adrian TE, Larsson J, Westermark P, Reidelberger RD. Chronic infusion of islet amyloid polypeptide causes anorexia in rats. Am J Physiol Regul Integr Comp Physiol. 1996;271:R1654-R1659.
Morley JE, Suarez MD, Mattamal M, Flood JF. Amylin and food intake in mice: Effects on motivation to eat and mechanism of action. Pharmacol Biochem Behavior. 1997;56:123-129.
Gedulin BR, Rink TJ, Young AA. Dose-response for glucagonostatic effect of amylin in rats. Metab-Clin Exp. 1997;46:67-70.
Young A, Denaro M. Roles of amylin in diabetes and in regulation of nutrient load. Nutrition 1998;14:524-527.
Silvestre R, Rodrıguez-Gallardo J, Jodka C, et al. Selective amylin inhibition of the glucagon response to arginine is extrinsic to the pancreas. Am J Physiol Endocrinol Metab. 2001;280:E443-E449.
Kong M, King P, Macdonald I, et al. Infusion of pramlintide, a human amylin analogue, delays gastric emptying in men with IDDM. Diabetologia 1997;40:82-88.
Young AA, Gedulin B, Vine W, Percy A, Rink TJ. Gastric emptying is accelerated in diabetic BB rats and is slowed by subcutaneous injections of amylin. Diabetologia 1995;38:642-648.
Reidelberger RD, Kelsey L, Heimann D. Effects of amylin-related peptides on food intake, meal patterns, and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1395-R1404.
Lutz TA, Tschudy S, Rushing PA, Scharrer E. Amylin receptors mediate the anorectic action of salmon calcitonin (sCT). Peptides 2000;21:233-238.
Twery MJ, Obie JF, Cooper CW. Ability of calcitonins to alter food and water consumption in the rat. Peptides 1982;3:749-755.
Gaggi R, Beltrandi E, Dall'Olio R, Ferri S. Relationships between hypocalcaemic and anorectic effect of calcitonin in the rat. Pharmacol Res Commun. 1985;17:209-215.
Bello NT, Kemm MH, Moran TH. Salmon calcitonin reduces food intake through changes in meal sizes in male rhesus monkeys. Am J Physiol Regul Integr Comp Physiol. 2008;295:R76-R81.
Tilakaratne N, Christopoulos G, Zumpe ET, Foord SM, Sexton PM. Amylin receptor phenotypes derived from human calcitonin receptor/RAMP coexpression exhibit pharmacological differences dependent on receptor isoform and host cell environment. J Pharmacol Exp Ther. 2000;294:61-72.
Beaumont K, Kenney MA, Young AA, Rink TJ. High affinity amylin binding sites in rat brain. Mol Pharmacol. 1993;44:493-497. doi
Christopoulos G, Perry KJ, Morfis M, et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol. 1999;56:235-242.
Wielinga PY, Alder B, Lutz TA. The acute effect of amylin and salmon calcitonin on energy expenditure. Physiol Behav. 2007;91:212-217.
Findlay DM, Sexton PM. Calcitonin. Growth Factors 2004;22:217-224.
Davey RA, Morris HA. The effects of salmon calcitonin-induced hypocalcemia on bone metabolism in ovariectomized rats. J Bone Miner Metab. 2005;23:359-365.
Roycroft J, Talmage RV. Changes due to age in the hypocalcemic and hypophosphatemic effects of salmon calcitonin in growing rats. Proc Soc Exp Biol Med. 1973;144:17-21.
Young AA, Vine W, Gedulin BR, et al. Preclinical pharmacology of pramlintide in the rat: Comparisons with human and rat amylin. Drug Dev Res. 1996;37:231-248.
Chaturvedula A, Joshi DP, Anderson C, Morris RL, Sembrowich WL, Banga AK. In vivo iontophoretic delivery and pharmacokinetics of salmon calcitonin. Int J Pharm. 2005;297:190-196.
Reidelberger RD, Arnelo U, Granqvist L, Permert J. Comparative effects of amylin and cholecystokinin on food intake and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol. 2001;280:R605-R611.
Eiden S, Daniel C, Steinbrueck A, Schmidt I, Simon E. Salmon calcitonin - a potent inhibitor of food intake in states of impaired leptin signalling in laboratory rodents. J Physiol. 2002;541:1041-1048.
Roth JD, Trevaskis JL, Wilson J, et al. Antiobesity effects of the beta-cell hormone amylin in combination with phentermine or sibutramine in diet-induced obese rats. Int J Obes. 2008;32:1201-1210.
Wielinga PY, Lowenstein C, Muff S, Munz M, Woods SC, Lutz TA. Central amylin acts as an adiposity signal to control body weight and energy expenditure. Physiol Behav. 2010;101:45-52.
Zhang ZM, Liu XB, Morgan DA, et al. Neuronal receptor activity-modifying protein 1 promotes energy expenditure in mice. Diabetes 2011;60:1063-1071.
Fernandes-Santos C, Zhang ZM, Morgan DA, Guo DF, Russo AF, Rahmouni K. Amylin acts in the central nervous system to increase sympathetic nerve activity. Endocrinology 2013;154:2481-2488.
Osaka T, Tsukamoto A, Koyama Y, Inoue S. Central and peripheral administration of amylin induces energy expenditure in anesthetized rats. Peptides 2008;29:1028-1035.
Coester B, Koester-Hegmann C, Lutz TA, Le Foll C. Amylin/calcitonin receptor-mediated signaling in POMC neurons influences energy balance and locomotor activity in chow-fed male mice. Diabetes 2020;db190849. https://diabetes.diabetesjournals.org/content/early/2020/03/05/db19-0849
Gydesen S. Dual Amylin and Calcitonin Receptor Agonists: A Novel Treatment for Obesity and Related Co-Morbidities. Copenhagen, Denmark: Technical University of Denmark; 2017.
Poyner DR, Sexton PM, Marshall I, et al. International union of pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev. 2002;54:233-246.
Gingell JJ, Burns ER, Hay DL. Activity of pramlintide, rat and human amylin but not a beta(1-42) at human amylin receptors. Endocrinology 2014;155:21-26.
Bailey RJ, Walker CS, Ferner AH, et al. Pharmacological characterization of rat amylin receptors: Implications for the identification of amylin receptor subtypes. Br J Pharmacol. 2012;166:151-167.
Houssami S, Findlay DM, Brady CL, Myers DE, Martin TJ, Sexton PM. Isoforms of the rat calcitonin receptor: Consequences for ligand binding and signal transduction. Endocrinology 1994;135:183-190.
Hilton JM, Dowton M, Houssami S, Sexton PM. Identification of key components in the irreversibility of salmon calcitonin binding to calcitonin receptors. J Endocrinol. 2000;166:213-226.
Lamp SJ, Findlay DM, Moseley JM, Martin TJ. Calcitonin induction of a persistent activated state of adenylate cyclase in human breast cancer cells (T 47D). J Biol Chem. 1981;256:2269-2274.
Gingell JJ, Hendrikse ER, Hay DL. New insights into the regulation of cgrp-family receptors. Trends Pharmacol Sci. 2019;40:71-83.
Dal Maso E, Just R, Hick C, et al. Characterization of signalling and regulation of common calcitonin receptor splice variants and polymorphisms. Biochem Pharmacol. 2018;148:111-129.
Zakariassen HL, John LM, Lykkesfeldt J, et al. Salmon calcitonin distributes into the arcuate nucleus in mice to a subset of NPY neurons. Neuropharmacology 2020;167:107987.
Gingell JJ, Rees TA, Hendrikse ER, et al. Distinct patterns of internalization of different calcitonin gene-related peptide receptors. ACS Pharmacol Transl Sci. 2020;3:296-304.
Morfis M, Tilakaratne N, Furness SGB, et al. Receptor activity-modifying proteins differentially modulate the g protein-coupling efficiency of amylin receptors. Endocrinology 2008;149:5423-5431.
Riediger T, Zuend D, Becskei C, Lutz TA. The anorectic hormone amylin contributes to feeding-related changes of neuronal activity in key structures of the gut-brain axis. Am J Physiol Regul Integr Comp Physiol. 2004;286:R114-R122.
Potes CS, Lutz TA, Riediger T. Identification of central projections from amylin-activated neurons to the lateral hypothalamus. Brain Res. 2010;1334:31-44.
Carter ME, Soden ME, Zweifel LS, Palmiter RD. Genetic identification of a neural circuit that suppresses appetite. Nature 2013;503:111-+.
Liberini CG, Boyle CN, Cifani C, Venniro M, Hope BT, Lutz TA. Amylin receptor components and the leptin receptor are co-expressed in single rat area postrema neurons. Eur J Neurosci. 2016;43:653-661.
Pan W, Adams JM, Allison MB, et al. Essential role for hypothalamic calcitonin receptor-expressing neurons in the control of food intake by leptin. Endocrinology 2018;159:1860-1872.
Potes CS, Boyle CN, Wookey PJ, Riediger T, Lutz TA. Involvement of the extracellular-signal regulated kinase 1/2 signaling pathway in amylin's eating inhibitory effect. Am J Physiol Regul Integr Comp Physiol. 2011;302:R340-R351.
Riediger T, Schmid HA, Lutz T, Simon E. Amylin potently activates AP neurons possibly via formation of the excitatory second messenger cGMP. Am J Physiol Regul Integr Comp Physiol. 2001;281:R1833-R1843.
Li ZY, Kelly L, Heiman M, Greengard P, Friedman JM. Hypothalamic amylin acts in concert with leptin to regulate food intake. Cell Metab. 2015;22:1059-1067.
Barth SW, Riediger T, Lutz TA, Rechkemmer G. Peripheral amylin activates circumventricular organs expressing calcitonin receptor a/b subtypes and receptor-activity modifying proteins in the rat. Brain Res. 2004;997:97-102.
Hilton JM, Chai SY, Sexton PM. In vitro autoradiographic localization of the calcitonin receptor isoforms, C1a and C1b, in rat brain. Neuroscience 1995;69:1223-1237.
Becskei C, Riediger T, Zünd D, Wookey P, Lutz TA. Immunohistochemical mapping of calcitonin receptors in the adult rat brain. Brain Res. 2004;1030:221-233.
Oliver KR, Kane SA, Salvatore CA, et al. Cloning, characterization and distribution of receptor activity central nervous system modifying proteins in the rat. Eur J Neurosci. 2001;14:618-628.
Nakamoto H, Soeda Y, Takami S, Minami M, Satoh M. Localization of calcitonin receptor mRNA in the mouse brain: Coexistence with serotonin transporter mRNA. Brain Res Mol Brain Res. 2000;76:93-102.
Whiting L, McCutcheon JE, Boyle CN, Roitman MF, Lutz TA. The area postrema (AP) and the parabrachial nucleus (PBN) are important sites for salmon calcitonin (sCT) to decrease evoked phasic dopamine release in the nucleus accumbens (NAc). Physiol Behav. 2017;176:9-16.
Lutz TA, Coester B, Whiting L, et al. Amylin selectively signals onto POMC neurons in the arcuate nucleus of the hypothalamus. Diabetes 2018;67:805-817.
Morley JE, Flood JF, Horowitz M, Morley P, Walter MJ. Modulation of food intake by peripherally administered amylin. Am J Physiol Regul Integr Comp Physiol. 1994;267:R178-R184.
Lutz T, Del Prete E, Scharrer E. Subdiaphragmatic vagotomy does not influence the anorectic effect of amylin. Peptides 1995;16:457-462.
Lutz TA, Althaus J, Rossi R, Scharrer E. Anorectic effect of amylin is not transmitted by capsaicin-sensitive nerve fibers. Am J Physiol Regul Integr Comp Physiol. 1998;274:R1777-R1782.
Braegger FE, Asarian L, Dahl K, Lutz TA, Boyle CN. The role of the area postrema in the anorectic effects of amylin and salmon calcitonin: Behavioral and neuronal phenotyping. Eur J Neurosci. 2014;40:3055-3066.
Bhavsar S, Watkins J, Young A. Synergy between amylin and cholecystokinin for inhibition of food intake in mice. Physiol Behav. 1998;64:557-561.
Mollet A, Meier S, Grabler V, Gilg S, Scharrer E, Lutz T. Endogenous amylin contributes to the anorectic effects of cholecystokinin and bombesin. Peptides 2003;24:91-98.
Lutz TA, Senn M, Althaus J, Del Prete E, Ehrensperger F, Scharrer E. Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats. Peptides 1998;19:309-317.
Potes CS, Turek VF, Cole RL, et al. Noradrenergic neurons of the area postrema mediate amylin's hypophagic action. Am J Physiol Regul Integr Comp Physiol. 2010;299:R623-R631.
Becskei C, Grabler V, Edwards GL, Riediger T, Lutz TA. Lesion of the lateral parabrachial nucleus attenuates the anorectic effect of peripheral amylin and CCK. Brain Res. 2007;1162:76-84.
Palmiter RD. The parabrachial nucleus: CGRP neurons function as a general alarm. Trends Neurosci. 2018;41:280-293.
Cheng W, Gonzalez I, Pan W, et al. Calcitonin receptor neurons in the mouse nucleus tractus solitarius control energy balance via the non-aversive suppression of feeding. Cell Metab. 2020;31:301-312.
Loh K, Herzog H, Shi YC. Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab. 2015;26:125-135.
Yeo GSH, Heisler LK. Unraveling the brain regulation of appetite: Lessons from genetics. Nat Neurosci. 2012;15:1343-1349.
Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci. 2005;8:571.
Parker JA, Bloom SR. Hypothalamic neuropeptides and the regulation of appetite. Neuropharmacology 2012;63:18-30.
Campbell JN, Macosko EZ, Fenselau H, et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci. 2017;20:484.
Lam BY, Cimino I, Polex-Wolf J, et al. Heterogeneity of hypothalamic pro-opiomelanocortin-expressing neurons revealed by single-cell RNA sequencing. Mol Metab. 2017;6:383-392.
Li X, Fan K, Li Q, Pan D, Hai R, Du C. Melanocortin 4 receptor-mediated effects of amylin on thermogenesis and regulation of food intake. Diabetes Metab Res Rev. 2019;35:e3149.
Barth SW, Riediger T, Lutz TA, Rechkemmer G. Differential effects of amylin and salmon calcitonin on neuropeptide gene expression in the lateral hypothalamic area and the arcuate nucleus of the rat. Neurosci Lett. 2003;341:131-134.
Le Foll C, Johnson MD, Dunn-Meynell AA, Boyle CN, Lutz TA, Levin BE. Amylin-induced central IL-6 production enhances ventromedial hypothalamic leptin signaling. Diabetes 2015;64:1621-1631.
Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of AgRP and NPY in fasting-activated hypothalamic neurons. Nat Neurosci. 1998;1:271.
Su Z, Alhadeff AL, Betley JN. Nutritive, post-ingestive signals are the primary regulators of AgRP neuron activity. Cell Rep. 2017;21:2724-2736.
Trevaskis JL, Coffey T, Cole R, et al. Amylin-mediated restoration of leptin responsiveness in diet-induced obesity: Magnitude and mechanisms. Endocrinology 2008;149:5679-5687.
Turek VF, Trevaskis JL, Levin BE, et al. Mechanisms of amylin/leptin synergy in rodent models. Endocrinology 2010;151:143-152.
Roth JD, Roland BL, Cole RL, et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: Evidence from nonclinical and clinical studies. Proc Natl Acad Sci U S A. 2008;105:7257-7262.
Duffy S, Lutz TA, Boyle CN. Rodent models of leptin receptor-deficiency are less sensitive to amylin. Am J Physiol Regul Integr Comp Physiol 2018;315(4):R856-R865.
Seth R, Terry DE, Parrish B, Bhatt R, Overton JM. Amylin-leptin coadministration stimulates central histaminergic signaling in rats. Brain Res. 2012;1442:15-24.
Smith PM, Brzezinska P, Hubert F, Mimee A, Maurice DH, Ferguson AV. Leptin influences the excitability of area postrema neurons. Am J Physiol Regul Integr Comp Physiol. 2016;310:R440-R448.
Mollet A, Lutz T, Meier S, Riediger T, Rushing P, Scharrer E. Histamine H1 receptors mediate the anorectic action of the pancreatic hormone amylin. Am J Physiol Regul Integr Comp Physiol. 2001;281:R1442-R1448.
Mollet A, Meier S, Riediger T, Lutz TA. Histamine H1 receptors in the ventromedial hypothalamus mediate the anorectic action of the pancreatic hormone amylin. Peptides 2003;24:155-158.
Zhang X, Wang Y, Dong H, Xu Y, Zhang S. Induction of microglial activation by mediators released from mast cells. Cell Physiol Biochem. 2016;38:1520-1531.
Zhu J, Qu C, Lu X, Zhang S. Activation of microglia by histamine and substance P. Cell Physiol Biochem. 2014;34:768-780.
Dobolyi A. Central amylin expression and its induction in rat dams. J Neurochem. 2009;111:1490-1500.
Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and disease. Nat Rev Neurosci. 2014;15:367.
MacNeil DJ. The role of melanin-concentrating hormone and its receptors in energy homeostasis. Front Endocrinol (Lausanne). 2013;4:49.
Lutz T, Tschudy S, Mollet A, Geary N, Scharrer E. Dopamine D2 receptors mediate amylin's acute satiety effect. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1697-R1703.
Mietlicki-Baase EG, Rupprecht LE, Olivos DR, et al. Amylin receptor signaling in the ventral tegmental area is physiologically relevant for the control of food intake. Neuropsychopharmacology 2013;38:1685.
Mietlicki-Baase EG, Reiner DJ, Cone JJ, et al. Amylin modulates the mesolimbic dopamine system to control energy balance. Neuropsychopharmacology 2015;40:372-385.
Baisley SK, Baldo BA. Amylin receptor signaling in the nucleus accumbens negatively modulates μ-opioid-driven feeding. Neuropsychopharmacology 2014;39:3009.
Schaeffer M, Langlet F, Lafont C, et al. Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proc Natl Acad Sci U S A. 2013;110:1512-1517.
Younk LM, Mikeladze M, Davis SN. Pramlintide and the treatment of diabetes: A review of the data since its introduction. Expert Opin Pharmacother. 2011;12:1439-1451.
Mack C, Smith P, Athanacio J, et al. Glucoregulatory effects and prolonged duration of action of davalintide: A novel amylinomimetic peptide. Diabetes Obes Metab. 2011;13:1105-1113.
Birch H. Amylin's $1 billion heavyweight deal. Nat Biotechnol. 2010;28:109.
Scrip Informa Pharma Intelligence. Takeda and amylin take obesity combo forward as davalintide dropped. 2010 [updated 2010; cited 2020 17 Mar]; https://scrip.pharmaintelligence.informa.com/SC007028/Takeda-and-Amylin-take-obesity-combo-forward-as-davalintide-dropped
Adis Insight. Dacra 089. 2019 [updated 2019; cited 2019 13 May]; https://adisinsight.springer.com/drugs/800052601
Hjuler ST, Gydesen S, Andreassen KV, et al. The dual amylin-and calcitonin-receptor agonist KBP-042 increases insulin sensitivity and induces weight loss in rats with obesity. Obesity. 2016;24:1712-1722.
KeyBioscience AG. Study to evaluate the efficacy and safety of KBP-042 in patients with type 2 diabetes. 2017 [updated 2017; cited 2020 17 Mar]; https://clinicaltrials.gov/ct2/show/study/NCT03230786?term=keybioscience
FierceBiotech.com. Lilly cuts a trio of pipeline assets, including btk inhibitor, diabetes drug. 2019 [updated 2019; cited 2019 16 Nov]; https://www.fiercebiotech.com/biotech/lilly-cuts-a-trio-pipeline-assets-including-btk-inhibitor-diabetes-med
Medwatch. Danish biotech boss after shelved lilly project: "We have better molecules". 2019 [updated 2019; cited 2020 17 Mar]; https://medwatch.dk/secure/Top_picks_in_english/article11178874.ece
Gydesen S, Hjuler ST, Freving Z, et al. A novel dual amylin and calcitonin receptor agonist, KBP-089, induces weight loss through a reduction in fat, but not lean mass, while improving food preference. Br J Pharmacol. 2017;174:591-602.
Gydesen S, Andreassen KV, Hjuler ST, Hellgren LI, Karsdal MA, Henriksen K. Optimization of tolerability and efficacy of the novel dual amylin and calcitonin receptor agonist KBP-089 through dose escalation and combination with a GLP-1 analog. Am J Physiol Endocrinol Metab. 2017;313:E598-E607.
Eli Lilly and Company. A clinical study to evaluate the safety, tolerability, PK, PD, and efficacy of KBP-089 in patients with T2DM. 2019 [updated 2019; cited 2019 16 Nov]; https://clinicaltrials.gov/ct2/show/NCT03907202?term=KBP-089&draw=2&rank=1
Novo Nordisk A/S. A research study of how NNC0174-0833 behaves in Japanese and Caucasian volunteers who are normal weight, overweight or with obesity. 2018 [updated 2018; cited 2019 16 Nov]; https://clinicaltrials.gov/ct2/show/NCT03787225?term=AM833&draw=2&rank=1
Novo Nordisk A/S. Research study investigating how well NNC0174-0833 works in people suffering from overweight or obesity. 2019 [updated 2019; cited 2019 6 Dec]; https://clinicaltrials.gov/ct2/show/NCT03856047?term=NN9838&draw=2&rank=2
Novo Nordisk A/S. A research study of how nnc0174-0833 taken with semaglutide works in people who are overweight or obese. 2018 [updated 2018; cited 2019 16 Nov]; https://clinicaltrials.gov/ct2/show/NCT03600480?term=AM833&draw=2&rank=2
Zealand Pharma A/S. Long-acting amylin analog (obesity/diabetes). 2019 [updated 2019; cited 2019 06 Dec]; https://www.zealandpharma.com/longacting-amylin-analog
Skarbaliene J, Just R.Anti-diabetic effects of novel long-acting amylin analogues ZP4982 and ZP5461 in ZDF rats. 2016 [updated 2016; cited 2020 17 Mar]; https://static1.squarespace.com/static/58983777d1758e28995640b4/t/5d4953643b48f80001ed9c5a/1565086566205/Jolanta+Skarbaliene+ADA+poster+Anti-diabetic+effects+of+novel+long-acting+amylin+analogues.pdf
Skarbaliene J, Pagler T, Eickelmann P, Just R. Anti-obesity effects of the novel long-acting amylin analogue zp4982 in high-fat diet fed rats 2017 [updated 2017; cited 2020 17 Mar]; https://static1.squarespace.com/static/58983777d1758e28995640b4/t/5d4953761475550001d57ffe/1565086584540/Keystone+meeting+Copenhagen+2017+JSK+final.pdf
Boehringer Ingelheim. Evaluation of safety and tolerability of single rising doses of bi 473494 in healthy subjects. 2017 [updated 2017; cited 2020 24 Mar]; https://clinicaltrials.gov/ct2/show/NCT03195088
GlobeNewswire. Zealand pharma regains worldwide rights to amylin analog program from boehringer ingelheim. 2020 [updated 2020; cited 2020 24 Mar]; http://www.globenewswire.com/news-release/2020/03/20/2004337/0/en/Zealand-Pharma-regains-worldwide-rights-to-Amylin-analog-program-from-Boehringer-Ingelheim.html