The role of macrophages in osseointegration of dental implants: An experimental study in vivo.


Journal

Journal of biomedical materials research. Part A
ISSN: 1552-4965
Titre abrégé: J Biomed Mater Res A
Pays: United States
ID NLM: 101234237

Informations de publication

Date de publication:
01 11 2020
Historique:
received: 18 12 2019
revised: 26 03 2020
accepted: 04 04 2020
pubmed: 5 5 2020
medline: 9 11 2021
entrez: 5 5 2020
Statut: ppublish

Résumé

To investigate the role of macrophages in the osseointegration of dental implants through induced macrophage reduction in a murine model. Fifty-four Sprague-Dawley rats with bilateral maxillary first molars replaced by titanium implants were randomly assigned into three groups. For the test group, macrophages were depleted by tail-vein injection of clodronate liposome (20 mg/kg) 3 days before implantation and reinjection every 3 days until the sacrifice of the rats (10 mg/kg). Animals treated with Phosphate Buffer saline (PBS) alone or empty liposome were included as controls. Samples contained implants were retrieved after 3, 7, 14, and 28 days, and the alterations of macrophages (CD68) and osteoblasts (Osterix) were evaluated using histology and immunohistochemistry technique. Histological analysis showed that new bone gradually formed within the lateral chamber regions in both the Control group and the Lip group, whereas bone healing was delayed at the first 2-weeks despite of pronounced newly formed peri-implant bone at 4 weeks in the Lipclod group. The bone-to-implant contact was significantly higher in the Lip and Control group than in the Lipclod group after 2 weeks. Immunohistochemical analysis showed that CD68+ cells were present both in the central region and in direct contact with implant surface throughout the healing period. Macrophages depletion reduced osteoblast amounts and new bone formation around implants in the first 2 weeks, and have no adverse impacts on the final formation of osseointegration. Macrophages play a dual role in both regulating the bone healing process and immune response to implant installation during the early stages.

Identifiants

pubmed: 32363723
doi: 10.1002/jbm.a.36978
doi:

Substances chimiques

Antigens, CD 0
Antigens, Differentiation, Myelomonocytic 0
CD68 protein, rat 0
Dental Implants 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2206-2216

Informations de copyright

© 2020 Wiley Periodicals, Inc.

Références

Abrahamsson, I., Berglundh, T., Linder, E., Lang, N. P., & Lindhe, J. (2004). Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clinical Oral Implants Research, 15(4), 381-392.
Albrektsson, T., Chrcanovic, B., Ostman, P., & Sennerby, L. (2017). Initial and long-term crestal bone responses to modern dental implants. Periodontology 2000, 73(1), 41-50.
Albrektsson, T., Dahlin, C., Jemt, T., Sennerby, L., Turri, A., & Wennerberg, A. (2014). Is marginal bone loss around oral implants the result of a provoked foreign body reaction? Clinical Implant Dentistry and Related Research, 16(2), 155-165.
Albrektsson, T., Jemt, T., Molne, J., Tengvall, P., & Wennerberg, A. (2019). On inflammation-immunological balance theory-a critical apprehension of disease concepts around implants: Mucositis and marginal bone loss may represent normal conditions and not necessarily a state of disease. Clinical Implant Dentistry and Related Research, 21(1), 183-189.
Alexander, K. A., Chang, M. K., Maylin, E. R., Kohler, T., Müller, R., Wu, A. C., … Pettit, A. R. (2011). Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. Journal of Bone and Mineral Research, 26(7), 1517-1532.
Amengual-Penafiel, L., Branes-Aroca, M., Marchesani-Carrasco, F., Jara-Sepúlveda, M. C., Parada-Pozas, L., & Cartes-Velásquez, R. (2019). Coupling between osseointegration and mechanotransduction to maintain foreign body equilibrium in the long-term: A comprehensive overview. Journal of Clinical Medicine, 8(2), 139.
Anderson, J. M., Rodriguez, A., & Chang, D. T. (2008). Foreign body reaction to biomaterials. Seminars in Immunology, 20(2), 86-100.
Berglundh, T., Abrahamsson, I., Lang, N. P., & Lindhe, J. (2003). De novo alveolar bone formation adjacent to endosseous implants. Clinical Oral Implants Research, 14(3), 251-262.
Bosshardt, D. D., Chappuis, V., & Buser, D. (2017). Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontol 2000, 73(1), 22-40.
Buser, D., Sennerby, L., & De Bruyn, H. (2017). Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontology 2000, 73(1), 7-21.
Chang, M. K., Raggatt, L. J., Alexander, K. A., Kuliwaba, J. S., Fazzalari, N. L., Schroder, K., … Pettit, A. R. (2008). Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. Journal of Immunology, 181(2), 1232-1244.
Chehroudi, B., Ghrebi, S., Murakami, H., Waterfield, J. D., Owen, G., & Brunette, D. M. (2010). Bone formation on rough, but not polished, subcutaneously implanted Ti surfaces is preceded by macrophage accumulation. Journal of Biomedical Materials Research Part A, 93A(2), 724-737.
Chen, Z., Klein, T., Murray, R. Z., Crawford, R., Chang, J., Wu, C., & Xiao, Y. (2016). Osteoimmunomodulation for the development of advanced bone biomaterials. Materials Today, 19(6), 304-321.
Chen, Z., Wu, C., Gu, W., Klein, T., Crawford, R., & Xiao, Y. (2014). Osteogenic differentiation of bone marrow MSCs by beta-tricalcium phosphate stimulating macrophages via BMP2 signalling pathway. Biomaterials, 35(5), 1507-1518.
Cho, S. W., Soki, F. N., Koh, A. J., Eber, M. R., Entezami, P., Park, S. I., … McCauley, L. K. (2014). Osteal macrophages support physiologic skeletal remodeling and anabolic actions of parathyroid hormone in bone. Proceedings of the National Academy of Sciences of the United States of America, 111(4), 1545-1550.
Das, A., Sinha, M., Datta, S., Abas, M., Chaffee, S., Sen, C. K., & Roy, S. (2015). Monocyte and macrophage plasticity in tissue repair and regeneration. The American Journal of Pathology, 185(10), 2596-2606.
Davies, L. C., Jenkins, S. J., Allen, J. E., & Taylor, P. R. (2013). Tissue-resident macrophages. Nature Immunology, 14(10), 986-995.
Davison, N. L., Gamblin, A. L., Layrolle, P., Yuan, H., deBruijn, J. D., & Barrère-de Groot, F. (2014). Liposomal clodronate inhibition of osteoclastogenesis and osteoinduction by submicrostructured beta-tricalcium phosphate. Biomaterials, 35(19), 5088-5097.
Donath, K., Laass, M., & Gunzl, H. J. (1992). The histopathology of different foreign-body reactions in oral soft tissue and bone tissue. Virchows Archiv A, Pathological Anatomy and Histopathology, 420(2), 131-137.
Franz, S., Rammelt, S., Scharnweber, D., & Simon, J. C. (2011). Immune responses to implants - A review of the implications for the design of immunomodulatory biomaterials. Biomaterials, 32(28), 6692-6709.
Hays, P. L., Kawamura, S., Deng, X., Dagher, E., Mithoefer, K., Ying, L., & Rodeo, S. A. (2008). The role of macrophages in early healing of a tendon graft in a bone tunnel. Journal of Bone and Joint Surgery-American, 90A(3), 565-579.
Horwood, N. J. (2016). Macrophage polarization and bone formation: A review. Clinical Reviews in Allergy & Immunology., 51(1), 79-86.
Hotchkiss, K. M., Reddy, G. B., Hyzy, S. L., Schwartz, Z., Boyan, B. D., & Olivares-Navarrete, R. (2016). Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomaterialia, 31, 425-434.
Klopfleisch, R. (2016). Macrophage reaction against biomaterials in the mouse model - Phenotypes, functions and markers. Acta Biomaterialia, 43, 3-13.
Lam, R. S., O'Brien-Simpson, N. M., Lenzo, J. C., Holden, J. A., Brammar, G. C., Walsh, K. A., … Reynolds, E. C. (2014). Macrophage depletion abates Porphyromonas gingivalis-induced alveolar bone resorption in mice. Journal of Immunology, 193(5), 2349-2362.
Loi, F., Cordova, L. A., Pajarinen, J., Lin, T. H., Yao, Z., & Goodman, S. B. (2016). Inflammation, fracture and bone repair. Bone, 86, 119-130.
Miron, R. J., & Bosshardt, D. D. (2016). OsteoMacs: Key players around bone biomaterials. Biomaterials, 82, 1-19.
Miron, R. J., Zohdi, H., Fujioka-Kobayashi, M., & Bosshardt, D. D. (2016). Giant cells around bone biomaterials: Osteoclasts or multi-nucleated Giant cells? Acta Biomaterialia, 46, 15-28.
Murray, P. J., Allen, J. E., Biswas, S. K., Fisher, E. A., Gilroy, D. W., Goerdt, S., … Wynn, T. A. (2014). Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity, 41(1), 14-20.
Pajarinen, J., Lin, T., Gibon, E., Kohno, Y., Maruyama, M., Nathan, K., … Goodman, S. B. (2019). Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials, 196, 80-89.
Pettit, A. R., Chang, M. K., Hume, D. A., & Raggatt, L. J. (2008). Osteal macrophages: A new twist on coupling during bone dynamics. Bone, 43(6), 976-982.
Raggatt, L. J., Wullschleger, M. E., Alexander, K. A., Wu, A. C., Millard, S. M., Kaur, S., … Pettit, A. R. (2014). Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. The American Journal of Pathology, 184(12), 3192-3204.
Sadtler, K., Estrellas, K., Allen, B. W., Wolf, M. T., Fan, H., Tam, A. J., … Elisseeff, J. H. (2016). Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science, 352(6283), 366-370.
Salvi, G. E., Bosshardt, D. D., Lang, N. P., Abrahamsson, I., Berglundh, T., Lindhe, J., … Donos, N. (2015). Temporal sequence of hard and soft tissue healing around titanium dental implants. Periodontology 2000, 68(1), 135-152.
Schlundt, C., El, K. T., Serra, A., Dienelt, A., Wendler, S., Schell, H., … Duda, G. N. (2015). Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone, 106, 78-89.
Sridharan, R., Cameron, A. R., Kelly, D. J., Kearney, C. J., & O'Brien, F. J. (2015). Biomaterial based modulation of macrophage polarization: A review and suggested design principles. Materials Today, 18(6), 313-325.
Terheyden, H., Lang, N. P., Bierbaum, S., & Stadlinger, B. (2012). Osseointegration-communication of cells. Clinical Oral Implants Research, 23(10), 1127-1135.
Thalji, G., & Cooper, L. F. (2014). Molecular assessment of osseointegration in vitro: A review of current literature. The International Journal of Oral & Maxillofacial Implants, 29(2), e171-e199.
Thalji, G. N., Nares, S., & Cooper, L. F. (2014). Early molecular assessment of osseointegration in humans. Clinical Oral Implants Research, 25(11), 1273-1285.
Toben, D., Schroeder, I., El Khassawna, T., Mehta, M., Hoffmann, J. E., Frisch, J. T., … Duda, G. N. (2011). Fracture healing is accelerated in the absence of the adaptive immune system. Journal of Bone and Mineral Research, 26(1), 113-124.
Trindade, R., Albrektsson, T., Galli, S., Prgomet, Z., Tengvall, P., & Wennerberg, A. (2018a). Osseointegration and foreign body reaction: Titanium implants activate the immune system and suppress bone resorption during the first 4 weeks after implantation. Clinical Implant Dentistry and Related Research, 20(1), 82-91.
Trindade, R., Albrektsson, T., Galli, S., Prgomet, Z., Tengvall, P., & Wennerberg, A. (2018b). Bone immune response to materials, part I: Titanium, PEEK and copper in comparison to sham at 10 days in rabbit tibia. Journal of Clinical Medicine, 7(12), 527.
Trindade, R., Albrektsson, T., Tengvall, P., & Wennerberg, A. (2016). Foreign body reaction to biomaterials: On mechanisms for buildup and breakdown of osseointegration. Clinical Implant Dentistry and Related Research, 18(1), 192-203.
vanRooijen, N., & van Kesteren-Hendrikx, E. (2003). "In vivo" depletion of macrophages by liposome-mediated "suicide". Methods in Enzymology, 373, 3-16.
Vi, L., Baht, G. S., Whetstone, H., Ng, A., Wei, Q., Poon, R., … Alman, B. A. (2015). Macrophages promote osteoblastic differentiation in-vivo: Implications in fracture repair and bone homeostasis. Journal of Bone and Mineral Research, 30(6), 1090-1102.
Wang, X., Li, Y., Feng, Y., Cheng, H., & Li, D. (2019). Macrophage polarization in aseptic bone resorption around dental implants induced by Ti particles in a murine model. Journal of Periodontal Research, 54, 329-338.
Wu, A. C., Raggatt, L. J., Alexander, K. A., & Pettit, A. R. (2013). Unraveling macrophage contributions to bone repair. Bonekey Reports, 2, 373.

Auteurs

Xin Wang (X)

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, China.
Department of Stomatology, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, China.

Yu Li (Y)

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, China.

Yuan Feng (Y)

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, China.

Haode Cheng (H)

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, China.

Dehua Li (D)

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, China.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH