Hepatic Slug epigenetically promotes liver lipogenesis, fatty liver disease, and type 2 diabetes.
Animals
Diabetes Mellitus, Type 2
/ genetics
Epigenesis, Genetic
Fatty Acid Synthase, Type I
/ genetics
Gene Deletion
Hepatocytes
Histone Demethylases
/ genetics
Humans
Lipogenesis
Mice
Mice, Transgenic
Mutation
Non-alcoholic Fatty Liver Disease
/ genetics
Snail Family Transcription Factors
/ biosynthesis
Diabetes
Hepatology
Insulin
Insulin signaling
Metabolism
Journal
The Journal of clinical investigation
ISSN: 1558-8238
Titre abrégé: J Clin Invest
Pays: United States
ID NLM: 7802877
Informations de publication
Date de publication:
01 06 2020
01 06 2020
Historique:
received:
09
02
2019
accepted:
20
02
2020
pubmed:
5
5
2020
medline:
3
2
2021
entrez:
5
5
2020
Statut:
ppublish
Résumé
De novo lipogenesis is tightly regulated by insulin and nutritional signals to maintain metabolic homeostasis. Excessive lipogenesis induces lipotoxicity, leading to nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes. Genetic lipogenic programs have been extensively investigated, but epigenetic regulation of lipogenesis is poorly understood. Here, we identified Slug as an important epigenetic regulator of lipogenesis. Hepatic Slug levels were markedly upregulated in mice by either feeding or insulin treatment. In primary hepatocytes, insulin stimulation increased Slug expression, stability, and interactions with epigenetic enzyme lysine-specific demethylase-1 (Lsd1). Slug bound to the fatty acid synthase (Fasn) promoter where Slug-associated Lsd1 catalyzed H3K9 demethylation, thereby stimulating Fasn expression and lipogenesis. Ablation of Slug blunted insulin-stimulated lipogenesis. Conversely, overexpression of Slug, but not a Lsd1 binding-defective Slug mutant, stimulated Fasn expression and lipogenesis. Lsd1 inhibitor treatment also blocked Slug-stimulated lipogenesis. Remarkably, hepatocyte-specific deletion of Slug inhibited the hepatic lipogenic program and protected against obesity-associated NAFLD, insulin resistance, and glucose intolerance in mice. Conversely, liver-restricted overexpression of Slug, but not the Lsd1 binding-defective Slug mutant, had the opposite effects. These results unveil an insulin/Slug/Lsd1/H3K9 demethylation lipogenic pathway that promotes NAFLD and type 2 diabetes.
Identifiants
pubmed: 32365055
pii: 128073
doi: 10.1172/JCI128073
pmc: PMC7260003
doi:
pii:
Substances chimiques
SNAI1 protein, human
0
Snai2 protein, mouse
0
Snail Family Transcription Factors
0
Histone Demethylases
EC 1.14.11.-
KDM1a protein, mouse
EC 1.14.11.-
KDM1A protein, human
EC 1.5.-
FASN protein, human
EC 2.3.1.85
Fasn protein, mouse
EC 2.3.1.85
Fatty Acid Synthase, Type I
EC 2.3.1.85
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2992-3004Subventions
Organisme : NIDDK NIH HHS
ID : P30 DK020572
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK114220
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK115646
Pays : United States
Organisme : NIAAA NIH HHS
ID : R21 AA025945
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK094014
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
J Cell Physiol. 2010 Nov;225(3):682-91
pubmed: 20509143
Cell. 2009 Mar 20;136(6):1056-72
pubmed: 19303849
Cell Rep. 2016 Jun 14;15(11):2536-49
pubmed: 27264172
Proc Natl Acad Sci U S A. 2003 May 27;100(11):6358-63
pubmed: 12738878
Gastroenterology. 2016 Jan;150(1):79-81.e2
pubmed: 26376348
Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11245-50
pubmed: 15266058
Hum Mol Genet. 2007 Dec 1;16(23):2972-86
pubmed: 17905753
Cell Metab. 2012 May 2;15(5):574-84
pubmed: 22560210
Nat Cell Biol. 2016 Sep;18(9):917-29
pubmed: 27479603
Cell. 2012 Mar 2;148(5):1015-28
pubmed: 22385965
Exp Mol Med. 2010 Jun 30;42(6):428-36
pubmed: 20418652
Nat Commun. 2015 Jun 23;6:7466
pubmed: 26100857
EMBO J. 2010 Jun 2;29(11):1803-16
pubmed: 20389281
Hepatology. 2015 Jul;62(1):220-31
pubmed: 25545350
Cancer Res. 2012 Jul 15;72(14):3607-17
pubmed: 22637725
Mol Cell Biol. 2004 Jan;24(1):306-19
pubmed: 14673164
Cancer Cell. 2013 Mar 18;23(3):316-31
pubmed: 23453623
Cell Metab. 2009 Dec;10(6):499-506
pubmed: 19945407
Cell Rep. 2016 Nov 15;17(8):2015-2027
pubmed: 27851965
Mol Cell. 1999 Sep;4(3):343-52
pubmed: 10518215
Nat Commun. 2018 Jul 16;9(1):2751
pubmed: 30013137
Endocrinology. 2017 May 1;158(5):1207-1216
pubmed: 28379340
Curr Pharm Des. 2014;20(11):1698-705
pubmed: 23888971
J Biol Chem. 2002 Mar 22;277(12):10691-7
pubmed: 11781314
Asian Pac J Cancer Prev. 2013;14(6):3625-30
pubmed: 23886156
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16654-9
pubmed: 23011797
Cell. 2005 Nov 18;123(4):641-53
pubmed: 16286009
Int J Oncol. 2014 Jul;45(1):165-76
pubmed: 24806843
Cell Metab. 2012 May 2;15(5):725-38
pubmed: 22521878
J Clin Invest. 2016 Jan;126(1):137-50
pubmed: 26619117
Neoplasia. 2009 Dec;11(12):1371-82
pubmed: 20019845
J Clin Invest. 2017 Dec 1;127(12):4449-4461
pubmed: 29106384
Development. 2005 Jul;132(14):3151-61
pubmed: 15983400
Gastroenterology. 2014 Mar;146(3):726-35
pubmed: 24316260
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3441-6
pubmed: 20133650
Diabetes. 2014 Feb;63(2):585-95
pubmed: 24150605
Cancer Cell. 2002 Oct;2(4):279-88
pubmed: 12398892
J Lipid Res. 2016 Jul;57(7):1219-30
pubmed: 27252523
J Biol Chem. 2011 Nov 4;286(44):38128-35
pubmed: 21908604
Hepatology. 2014 Dec;60(6):2065-76
pubmed: 25088600
J Biol Chem. 2015 May 1;290(18):11704-14
pubmed: 25792747
Cancer Res. 2013 Jan 1;73(1):235-45
pubmed: 23054398
Nat Med. 2012 Jun;18(6):943-9
pubmed: 22581287
Dev Cell. 2014 Aug 11;30(3):295-308
pubmed: 25117682