Crassulacean acid metabolism guard cell anion channel activity follows transcript abundance and is suppressed by apoplastic malate.

Kalanchoë fedtschenkoi apoplast circadian stomatal regulation crassulacean acid metabolism guard cell anion channel malic acid metabolism voltage clamp

Journal

The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884

Informations de publication

Date de publication:
09 2020
Historique:
received: 13 04 2020
accepted: 22 04 2020
pubmed: 6 5 2020
medline: 15 5 2021
entrez: 6 5 2020
Statut: ppublish

Résumé

Plants utilising crassulacean acid metabolism (CAM) concentrate CO

Identifiants

pubmed: 32367511
doi: 10.1111/nph.16640
doi:

Substances chimiques

Anions 0
Malates 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1847-1857

Subventions

Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/F009313/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/P011586/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/N01832X/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/N006909/1
Pays : United Kingdom

Informations de copyright

© 2020 University of Glasgow New Phytologist © 2020 New Phytologist Trust.

Références

Abraham PE, Yin H, Borland AM, Weighill D, Lim SD, De Paoli HC, Engle N, Jones PC, Agh R, Weston DJ et al. 2016. Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. Nature Plants 2: 1-10.
Ando E, Kinoshita T. 2018. Red light-induced phosphorylation of plasma membrane H+-ATPase in stomatal guard cells. Plant Physiology 178: 838-849.
Blatt MR. 1987a. Electrical characteristics of stomatal guard cells: the contribution of ATP-dependent, "electrogenic" transport revealed by current-voltage and difference-current-voltage analysis. Journal of Membrane Biology 98: 257-274.
Blatt MR. 1987b. Electrical characteristics of stomatal guard cells: the ionic basis of the membrane potential and the consequence of potassium chloride leakage from microelectrodes. Planta 170: 272-287.
Blatt MR. 1990. Potassium channel currents in intact stomatal guard cells: rapid enhancement by abscisic acid. Planta 180: 445-455.
Blatt MR, Armstrong F. 1993. K+ channels of stomatal guard cells: abscisic acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta 191: 330-341.
Borland AM, Griffiths H, Hartwell J, Smith JAC. 2009. Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. Journal of Experimental Botany 60: 2879-2896.
Borland AM, Hartwell J, Jenkins GI, Wilkins MB, Nimmo HG. 1999. Metabolite control overrides circadian regulation of phosphoenolpyruvate carboxylase kinase and CO2 fixation in Crassulacean acid metabolism. Plant Physiology 121: 889-896.
Boxall SF, Dever LV, Knerova J, Gould PD, Hartwell J. 2017. Phosphorylation of phosphoenolpyruvate carboxylase is essential for maximal and sustained dark CO2 fixation and core circadian clock operation in the obligate crassulacean acid metabolism species Kalanchoe fedtschenkoi. The Plant Cell 29: 2519-2536.
Boxall SF, Kadu N, Dever LV, Knerova J, Waller J, Gould PJD, Hartwell J. 2020. Kalanchoë PPC1 is essential for crassulacean acid metabolism and the regulation of core circadian clock and guard cell signaling genes. The Plant Cell 32: 1136-1160.
Brearley J, Venis MA, Blatt MR. 1997. The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells. Planta 203: 145-154.
Cheffings CM, Pantoja O, Ashcroft FM, Smith JAC. 1997. Malate transport and vacuolar ion channels in CAM plants. Journal of Experimental Botany 48: 623-631.
Chen LS, Lin Q, Nose A. 2002. A comparative study on diurnal changes in metabolite levels in the leaves of three crassulacean acid metabolism (CAM) species, Ananas comosus, Kalanchoe daigremontiana and K. pinnata. Journal of Experimental Botany 53: 341-350.
Chen ZH, Hills A, Lim CK, Blatt MR. 2010. Dynamic regulation of guard cell anion channels by cytosolic free Ca2+ concentration and protein phosphorylation. The Plant Journal 61: 816-825.
Davis SC, LeBauer DS, Long SP. 2014. Light to liquid fuel: theoretical and realized energy conversion efficiency of plants using Crassulacean Acid Metabolism (CAM) in arid conditions. Journal of Experimental Botany 65: 3471-3478.
Dever LV, Boxall SF, Knerova J, Hartwell J. 2015. Transgenic perturbation of the decarboxylation phase of crassulacean acid metabolism alters physiology and metabolism but has only a small effect on growth. Plant Physiology 167: 44-59.
Dittrich P, Raschke K. 1977. Malate metabolism in isolated epidermis of Commelina communis L. in relation to stomatal functioning. Planta 134: 77-81.
Eisenach C, Baetz U, Huck NV, Zhang J, De Angeli A, Beckers GJM, Martinoia E. 2017. ABA-lnduced stomatal closure involves ALMT4, a phosphorylation-dependent vacuolar anion channel of Arabidopsis. The Plant Cell 29: 2552-2569.
Franks PJ, Berry JA, Lombardozzi DL, Bonan GB. 2017. Stomatal function across temporal and spatial scales: deep-time trends, land-atmosphere coupling and global models. Plant Physiology 174: 583-602.
Gabriel R, Kesselmeier J. 1999. Apoplastic solute concentrations of organic acids and mineral nutrients in the leaves of several fagaceae. Plant and Cell Physiology 40: 604-612.
Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KAS et al. 2009. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences, USA 106: 21425-21430.
Grabov A, Blatt MR. 1998. Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proceedings of the National Academy of Sciences, USA 95: 4778-4783.
Grabov A, Blatt MR. 1999. A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiology 119: 277-287.
Grabov A, Leung J, Giraudat J, Blatt MR. 1997. Alteration of anion channel kinetics in wild-type and abi1-1 transgenic Nicotiana benthamiana guard cells by abscisic acid. The Plant Journal 12: 203-213.
Hafke JB, Hafke Y, Smith JAC, Luttge U, Thiel G. 2003. Vacuolar malate uptake is mediated by an anion-selective inward rectifier. The Plant Journal 35: 116-128.
Hartwell J. 2006. The circadian clock in CAM plants. In: Hall A, McWatters H, eds. Endogenour rhythms in plants. Oxford, UK: Blackwell, 211-236.
Hartwell J, Dever LV, Boxall SF. 2016. Emerging model systems for functional genomics analysis of Crassulacean acid metabolism. Current Opinion in Plant Biology 31: 100-108.
Hartwell J, Gill A, Nimmo GA, Wilkins MB, Jenkins GL, Nimmo HG. 1999. Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. The Plant Journal 20: 333-342.
Hartwell J, Smith LH, Wilkins MB, Jenkins GI, Nimmo HG. 1996. Higher plant phosphoenolpyruvate carboxylase kinase is regulated at the level of translatable mRNA in response to light or a circadian rhythm. The Plant Journal 10: 1071-1078.
Hedrich R, Marten I. 1993. Malate-induced feedback regulation of plasma membrane anion channels could provide a CO2 sensor to guard cells. EMBO Journal 12: 897-901.
Hedrich R, Marten I, Lohse G, Dietrich P, Winter H, Lohaus G, Heldt HW. 1994. Malate-sensitive anion channels enable guard cells to sense changes in ambient CO2 concentration. The Plant Journal 6: 741-748.
Hedrich R, Neimanis S, Savchenko G, Felle HH, Kaiser WM, Heber U. 2001. Changes in apoplastic pH and membrane potential in leaves in relation to stomatal responses to CO2, malate abscisic acid or interruption of water supply. Planta 213: 594-601.
Hetherington AM, Woodward FI. 2003. The role of stomata in sensing and driving environmental change. Nature 424: 901-908.
Inoue S-i, Kinoshita T. 2017. Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. Plant Physiology 174: 531-538.
Iwaskaki I, Arata H, Kijima H, Nishimura M. 1992. Two types of channels involved in the malate ion transport across the tonoplast of a crassulacean acid metabolism plant. Plant Physiology 98: 1494-1497.
Jezek M, Blatt MR. 2017. The membrane transport system of the guard cell and its integration for stomatal dynamics. Plant Physiology 174: 487-519.
Keller BU, Hedrich R, Raschke K. 1989. Voltage-dependent anion channels in the plasma membrane of guard cells. Nature 341: 450-453.
Kohler B, Raschke K. 2000. The delivery of salts to the xylem. Three types of anion conductance in the plasmalemma of the xylem parenchyma of roots of barley. Plant Physiology 122: 243-254.
Lawson T, Blatt MR. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164: 1556-1570.
Leakey ADB, Ferguson JN, Pignon CP, Wu A, Jin Z, Hammer GL, Lobell DB. 2019. Water use efficiency as a constraint and target for improving the resilience and productivity of C3 and C4 crops. Annual Review of Plant Biology 70: 781-808.
Lemtiri-Chlieh F, MacRobbie EAC. 1994. Role of calcium in the modulation of Vicia guard cell potassium channels by abscisic acid: a patch-clamp study. Journal of Membrane Biology 137: 99-107.
Lopez-Millan AF, Morales F, Abadia A, Abadia J. 2000. Effects of iron deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet. Implications for iron and carbon transport. Plant Physiology 124: 873-884.
Luttge U. 2004. Ecophysiology of Crassulacean Acid Metabolism (CAM). Annals of Botany 93: 629-652.
Marten H, Hedrich R, Roelfsema MRG. 2007. Blue light inhibits guard cell plasma membrane anion channels in a phototropin-dependent manner. The Plant Journal 50: 29-39.
Medeiros DB, Martins SCV, Cavalcanti JHF, Daloso DM, Martinoia E, Nunes-Nesi A, DaMatta FM, Fernie AR, Araujo WL. 2016. Enhanced photosynthesis and growth in atquac1 knockout mutants are due to altered organic acid accumulation and an increase in both stomatal and mesophyll conductance. Plant Physiology 170: 86-101.
Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Rasheid KAS, Geiger D, Marten I, Martinoia E, Hedrich R. 2010. AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. The Plant Journal 63: 1054-1062.
Mumm P, Imes D, Martinoia E, Al-Rasheid KAS, Geiger D, Marten I, Hedrich R. 2013. C-Terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1. Molecular Plant 6: 1550-1563.
O'Leary BM, Neale HC, Geilfus C-M, Jackson RW, Arnold DL, Preston GM. 2016. Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae pv. phaseolicola. Plant, Cell & Environment 39: 2172-2184.
Owen NA, Griffiths H. 2013. A system dynamics model integrating physiology and biochemical regulation predicts extent of crassulacean acid metabolism (CAM) phases. New Phytologist 200: 1116-1131.
Roelfsema MRG, Hedrich R. 2005. In the light of stomatal opening: new insights into ‘the Watergate’. New Phytologist 167: 665-691.
Roelfsema MRG, Levchenko V, Hedrich R. 2004. ABA depolarizes guard cells in intact plants, through a transient activation of R- and S-type anion channels. The Plant Journal 37: 578-588.
Schmidt C, Schroeder JI. 1994. Anion selectivity of slow anion channels in the plasma membrane of guard cells - large nitrate permeability. Plant Physiology 106: 383-391.
Schroeder JI, Keller BU. 1992. Two types of anion channel currents in guard cells with distinct voltage regulation. Proceedings of the National Academy of Sciences, USA 89: 5025-5029.
Schwartz A, Ilan N, Schwarz M, Scheaffer J, Assmann SM, Schroeder JI. 1995. Anion channel blockers inhibit S-type anion channels and abscisic acid responses in guard cells. Plant Physiology 109: 651-658.
Smith JAC, Pennington AJ, Martin RJ. 1990. A malate-specific ion channel in the vacuolar membrane of cam plants. Plant Physiology 93: 32-32.
Ting IP. 1985. Crassulacean acid metabolism. Annual Review of Plant Physiology and Plant Molecular Biology 36: 595-622.
Van Kirk CA, Raschke K. 1977. Stomatal aperture and malate content of epidermis - effects of chloride and abscisic acid. Plant Physiology 59: 96-108.
Van Kirk CA, Raschke K. 1978. Release of malate from epidermal strips during stomatal closure. Plant Physiology 61: 474-475.
Von Caemmerer S, Griffiths H. 2009. Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata. Plant, Cell & Environment 32: 567-576.
Wang Y, Blatt MR. 2011. Anion channel sensitivity to cytosolic organic acids implicates a central role for oxaloacetate in integrating ion flux with metabolism in stomatal guard cells. Biochemical Journal 439: 161-170.
Yang X, Hu R, Yin H, Jenkins J, Shu S, Tang H, Liu D, Weighill DA, Yim WC, Ha J et al. 2017. The Kalanchoe genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nature. Communications 8: 1-15.
Zhang J, De-oliveira-Ceciliato P, Takahashi Y, Schulze S, Dubeaux G, Hauser F, Azoulay-Shemer T, Toldsepp K, Kollist H, Rappel W-J et al. 2018. Insights into the molecular mechanisms of CO2-mediated regulation of stomatal movements. Current Biology 28: R1356-R1363.

Auteurs

Cécile Lefoulon (C)

Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK.

Susanna F Boxall (SF)

Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool,, L69 7ZB, UK.

James Hartwell (J)

Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool,, L69 7ZB, UK.

Michael R Blatt (MR)

Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Droughts Trees Climate Change Plant Leaves Photosynthesis

Classifications MeSH