Inhibitory effect of diosmetin on inflammation and lipolysis in coculture of adipocytes and macrophages.
adipocytes
diosmetin
macrophages
metabolic diseases
paracrine loop
Journal
Journal of food biochemistry
ISSN: 1745-4514
Titre abrégé: J Food Biochem
Pays: United States
ID NLM: 7706045
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
04
06
2019
revised:
25
03
2020
accepted:
31
03
2020
pubmed:
6
5
2020
medline:
22
6
2021
entrez:
6
5
2020
Statut:
ppublish
Résumé
The interaction between adipocytes and macrophages in obese tissues plays a critical role in the onset of metabolic syndromes. This study aimed to evaluate the modulatory effect of diosmetin on anti-inflammatory and anti-lipolytic activities in the coculture of macrophages and adipocytes. The secretion of inflammatory mediators increased in a coculture medium, however, diosmetin significantly reduced the levels of these inflammatory mediators such as nitric oxide (NO), tumor necrosis factor-α, and monocyte chemoattractant protein. Diosmetin down-regulated the protein expression of inducible NO synthase in cocultured macrophages and adipocytes, and inhibited the phosphorylation of mitogen-activated protein kinases and the translocation of p65 and p50 to the nucleus. Moreover, it suppressed the phosphorylation of hormone-sensitive lipase and the production of fatty acid-binding protein 4, and increased the mRNA expression of adiponectin in cocultured adipocytes by 18%-35%. These results indicate that diosmetin inhibited inflammation and lipolysis in the crosstalk between adipocytes and macrophages; diosmetin-containing foods could be used in dietary therapy for the prevention of obesity-related metabolic syndromes. PRACTICAL APPLICATIONS: Diosmetin occurs naturally in citrus fruits that have a high inhibitory effect on inflammation in cocultured adipocytes and macrophages via the inactivation of the MAPKs/NF-kB pathway. Diosmetin also inhibited lipolysis via the reduction of FFA and free glycerol. The present study suggests that treatment of diosmetin may be useful for the prevention of obesity and inflammation-related metabolic syndromes.
Substances chimiques
Flavonoids
0
diosmetin
TWZ37241OT
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13261Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Aerbajinai, W., Zhu, J., Gao, Z., Chin, K., & Rodgers, G. P. (2007). Thalidomide induces gamma-globin gene expression through increased reactive oxygen species-mediated p38 MAPK signaling and histone H4 acetylation in adult erythropoiesis. Blood, 110(8), 2864-2871.
Ando, C., Takahashi, N., Hirai, S., Nishimura, K., Lin, S., Uemura, T., … Kawada, T. (2009). Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation. FEBS Letters, 583(22), 3649-3654. https://doi.org/10.1016/j.febslet.2009.10.045
Bruun, J. M., Lihn, A. S., Pedersen, S. B., & Richelsen, B. (2005). Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): Implication of macrophages resident in the AT. Journal of Clinical Endocrinology and Metabolism, 90(4), 2282-2289. https://doi.org/10.1210/jc.2004-1696
Chait, A., & Kim, F. (2010). Saturated fatty acids and inflammation: Who pays the toll? Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 692-693. https://doi.org/10.1161/ATVBAHA.110.203984
Furuhashi, M., Ishimura, S., Ota, H., & Miura, T. (2011). Lipid chaperones and metabolic inflammation. International Journal of Inflammation, 2011, 642612. https://doi.org/10.4061/2011/642612
Ge, A., Liu, Y., Zeng, X., Kong, H., Ma, Y., Zhang, J., … Huang, M. (2015). Effect of diosmetin on airway remodeling in a murine model of chronic asthma. Acta Biochimica et Biophysica Sinica, 47(8), 604-611. https://doi.org/10.1093/abbs/gmv052
Granneman, J. G., & Moore, H. P. (2008). Location, location: Protein trafficking and lipolysis in adipocytes. Trends in Endocrinology and Metabolism, 19(1), 3-9. https://doi.org/10.1016/j.tem.2007.10.006
Hirai, S., Kim, Y. I., Goto, T., Kang, M. S., Yoshimura, M., Obata, A., … Kawada, T. (2007). Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sciences, 81(16), 1272-1279. https://doi.org/10.1016/j.lfs.2007.09.001
Jenkins-Kruchten, A. E., Bennaars-Eiden, A., Ross, J. R., Shen, W. J., Kraemer, F. B., & Bernlohr, D. A. (2003). Fatty acid-binding protein-hormone-sensitive lipase interaction. Fatty acid dependence on binding. Journal of Biological Chemistry, 278(48), 47636-47643. https://doi.org/10.1074/jbc.M307680200
Jiang, B., Qiao, J., Yang, Y., & Lu, Y. (2012). Inhibitory effect of paeoniflorin on the inflammatory vicious cycle between adipocytes and macrophages. Journal of Cellular Biochemistry, 113(8), 2560-2566. https://doi.org/10.1002/jcb.22173
Kim, Y. I., Mohri, S., Hirai, S., Lin, S., Goto, T., Ohyane, C., … Kawada, T. (2015). Tomato extract suppresses the production of proinflammatory mediators induced by interaction between adipocytes and macrophages. Bioscience, Biotechnology, and Biochemistry, 79(1), 82-87. https://doi.org/10.1080/09168451.2014.962472
Kim, Y., Park, Y., Namkoong, S., & Lee, J. (2014). Esculetin inhibits the inflammatory response by inducing heme oxygenase-1 in cocultured macrophages and adipocytes. Food Funct, 5(9), 2371-2377. https://doi.org/10.1039/C4FO00351A
Liao, W., Ning, Z., Chen, L., Wei, Q., Yuan, E., Yang, J., & Ren, J. (2014). Intracellular antioxidant detoxifying effects of diosmetin on 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress through inhibition of reactive oxygen species generation. Journal of Agriculture and Food Chemistry, 62(34), 8648-8654. https://doi.org/10.1021/jf502359x
Liu, J., Wen, X., Liu, B., Zhang, Q., Zhang, J., Miao, H., & Zhu, R. (2016). Diosmetin inhibits the metastasis of hepatocellular carcinoma cells by downregulating the expression levels of MMP-2 and MMP-9. Molecular Medicine Reports, 13(3), 2401-2408. https://doi.org/10.3892/mmr.2016.4872
Manteiga, S., Choi, K., Jayaraman, A., & Lee, K. (2013). Systems biology of adipose tissue metabolism: Regulation of growth, signaling and inflammation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 5(4), 425-447. https://doi.org/10.1002/wsbm.1213
Namkoong, S., Sung, J., Yang, J., Choi, Y., Jeong, H. S., & Lee, J. (2017). Nobiletin attenuates the inflammatory response through Heme Oxygenase-1 induction in the crosstalk between adipocytes and macrophages. Journal of Medicinal Food, 20(9), 873-881. https://doi.org/10.1089/jmf.2017.3921
Nishina, A., Ukiya, M., Fukatsu, M., Koketsu, M., Ninomiya, M., Sato, D., … Kimura, H. (2015). Effects of various 5,7-dihydroxyflavone analogs on adipogenesis in 3T3-L1 Cells. Biological &/and Pharmaceutical Bulletin, 38(11), 1794-1800. https://doi.org/10.1248/bpb.b15-00489
Ohira, H., Fujioka, Y., Katagiri, C., Mamoto, R., Aoyama-Ishikawa, M., Amako, K., … Ikeda, M. (2013). Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. Journal of Atherosclerosis and Thrombosis, 20(5), 425-442. https://doi.org/10.5551/jat.15065
Okazaki, H., Osuga, J., Tamura, Y., Yahagi, N., Tomita, S., Shionoiri, F., … Ishibashi, S. (2002). Lipolysis in the absence of hormone-sensitive lipase: Evidence for a common mechanism regulating distinct lipases. Diabetes, 51(12), 3368-3375. https://doi.org/10.2337/diabetes.51.12.3368
Qin, Y., Chen, Y., & Li, J. (2016). Research progress of cell co-culture method. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 28(8), 765-768.
Shanmugam, K., Holmquist, L., Steele, M., Stuchbury, G., Berbaum, K., Schulz, O., … Münch, G. (2008). Plant-derived polyphenols attenuate lipopolysaccharide-induced nitric oxide and tumour necrosis factor production in murine microglia and macrophages. Molecular Nutrition & Food Research, 52(4), 427-438. https://doi.org/10.1002/mnfr.200700180
Shen, Z., Shao, J., Dai, J., Lin, Y., Yang, X., Ma, J., … Luo, P. (2016). Diosmetin protects against retinal injury via reduction of DNA damage and oxidative stress. Toxicology Reports, 3, 78-86. https://doi.org/10.1016/j.toxrep.2015.12.004
Suganami, T., Nishida, J., & Ogawa, Y. (2005). A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: Role of free fatty acids and tumor necrosis factor alpha. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(10), 2062-2068. https://doi.org/10.1161/01.ATV.0000183883.72263.13
Suganami, T., Tanimoto-Koyama, K., Nishida, J., Itoh, M., Yuan, X., Mizuarai, S., … Ogawa, Y. (2007). Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(1), 84-91.
Tsai, E. Y., Falvo, J. V., Tsytsykova, A. V., Barczak, A. K., Reimold, A. M., Glimcher, L. H., … Goldfeld, A. E. (2000). A lipopolysaccharide-specific enhancer complex involving Ets, Elk-1, Sp1, and CREB binding protein and p300 is recruited to the tumor necrosis factor alpha promoter in vivo. Molecular and Cellular Biology, 20(16), 6084-6094. https://doi.org/10.1128/MCB.20.16.6084-6094.2000
Wang, Y., Rangan, G. K., Goodwin, B., Tay, Y. C., & Harris, D. C. (2000). Lipopolysaccharide-induced MCP-1 gene expression in rat tubular epithelial cells is nuclear factor-kappaB dependent. Kidney International, 57(5), 2011-2022.
Weisberg, P. J., & Coughenour, M. B. (2003). Model-based assessment of aspen responses to elk herbivory in Rocky Mountain National Park, USA. Environmental Management, 32(1), 152-169. https://doi.org/10.1007/s00267-002-0029-3
Wellen, K. E., & Hotamisligil, G. S. (2003). Obesity-induced inflammatory changes in adipose tissue. Journal of Clinical Investigation, 112(12), 1785-1788. https://doi.org/10.1172/JCI20514
Xie, Q. W., Kashiwabara, Y., & Nathan, C. (1994). Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. Journal of Biological Chemistry, 269(7), 4705-4708.
Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., … Chen, H. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation, 112(12), 1821-1830. https://doi.org/10.1172/JCI200319451
Yang, K., Li, W. F., Yu, J. F., Yi, C., & Huang, W. F. (2017). Diosmetin protects against ischemia/reperfusion-induced acute kidney injury in mice. Journal of Surgical Research, 214, 69-78. https://doi.org/10.1016/j.jss.2017.02.067
Yu, G., Wan, R., Yin, G., Xiong, J., Hu, Y., Xing, M., … Hu, G. (2014). Diosmetin ameliorates the severity of cerulein-induced acute pancreatitis in mice by inhibiting the activation of the nuclear factor-kappaB. International Journal of Clinical and Experimental Pathology, 7(5), 2133-2142.
Yuan, M., Konstantopoulos, N., Lee, J., Hansen, L., Li, Z. W., Karin, M., & Shoelson, S. E. (2001). Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science, 293(5535), 1673-1677.