Inhibitory effect of diosmetin on inflammation and lipolysis in coculture of adipocytes and macrophages.


Journal

Journal of food biochemistry
ISSN: 1745-4514
Titre abrégé: J Food Biochem
Pays: United States
ID NLM: 7706045

Informations de publication

Date de publication:
07 2020
Historique:
received: 04 06 2019
revised: 25 03 2020
accepted: 31 03 2020
pubmed: 6 5 2020
medline: 22 6 2021
entrez: 6 5 2020
Statut: ppublish

Résumé

The interaction between adipocytes and macrophages in obese tissues plays a critical role in the onset of metabolic syndromes. This study aimed to evaluate the modulatory effect of diosmetin on anti-inflammatory and anti-lipolytic activities in the coculture of macrophages and adipocytes. The secretion of inflammatory mediators increased in a coculture medium, however, diosmetin significantly reduced the levels of these inflammatory mediators such as nitric oxide (NO), tumor necrosis factor-α, and monocyte chemoattractant protein. Diosmetin down-regulated the protein expression of inducible NO synthase in cocultured macrophages and adipocytes, and inhibited the phosphorylation of mitogen-activated protein kinases and the translocation of p65 and p50 to the nucleus. Moreover, it suppressed the phosphorylation of hormone-sensitive lipase and the production of fatty acid-binding protein 4, and increased the mRNA expression of adiponectin in cocultured adipocytes by 18%-35%. These results indicate that diosmetin inhibited inflammation and lipolysis in the crosstalk between adipocytes and macrophages; diosmetin-containing foods could be used in dietary therapy for the prevention of obesity-related metabolic syndromes. PRACTICAL APPLICATIONS: Diosmetin occurs naturally in citrus fruits that have a high inhibitory effect on inflammation in cocultured adipocytes and macrophages via the inactivation of the MAPKs/NF-kB pathway. Diosmetin also inhibited lipolysis via the reduction of FFA and free glycerol. The present study suggests that treatment of diosmetin may be useful for the prevention of obesity and inflammation-related metabolic syndromes.

Identifiants

pubmed: 32367620
doi: 10.1111/jfbc.13261
doi:

Substances chimiques

Flavonoids 0
diosmetin TWZ37241OT

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e13261

Informations de copyright

© 2020 Wiley Periodicals LLC.

Références

Aerbajinai, W., Zhu, J., Gao, Z., Chin, K., & Rodgers, G. P. (2007). Thalidomide induces gamma-globin gene expression through increased reactive oxygen species-mediated p38 MAPK signaling and histone H4 acetylation in adult erythropoiesis. Blood, 110(8), 2864-2871.
Ando, C., Takahashi, N., Hirai, S., Nishimura, K., Lin, S., Uemura, T., … Kawada, T. (2009). Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation. FEBS Letters, 583(22), 3649-3654. https://doi.org/10.1016/j.febslet.2009.10.045
Bruun, J. M., Lihn, A. S., Pedersen, S. B., & Richelsen, B. (2005). Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): Implication of macrophages resident in the AT. Journal of Clinical Endocrinology and Metabolism, 90(4), 2282-2289. https://doi.org/10.1210/jc.2004-1696
Chait, A., & Kim, F. (2010). Saturated fatty acids and inflammation: Who pays the toll? Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 692-693. https://doi.org/10.1161/ATVBAHA.110.203984
Furuhashi, M., Ishimura, S., Ota, H., & Miura, T. (2011). Lipid chaperones and metabolic inflammation. International Journal of Inflammation, 2011, 642612. https://doi.org/10.4061/2011/642612
Ge, A., Liu, Y., Zeng, X., Kong, H., Ma, Y., Zhang, J., … Huang, M. (2015). Effect of diosmetin on airway remodeling in a murine model of chronic asthma. Acta Biochimica et Biophysica Sinica, 47(8), 604-611. https://doi.org/10.1093/abbs/gmv052
Granneman, J. G., & Moore, H. P. (2008). Location, location: Protein trafficking and lipolysis in adipocytes. Trends in Endocrinology and Metabolism, 19(1), 3-9. https://doi.org/10.1016/j.tem.2007.10.006
Hirai, S., Kim, Y. I., Goto, T., Kang, M. S., Yoshimura, M., Obata, A., … Kawada, T. (2007). Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sciences, 81(16), 1272-1279. https://doi.org/10.1016/j.lfs.2007.09.001
Jenkins-Kruchten, A. E., Bennaars-Eiden, A., Ross, J. R., Shen, W. J., Kraemer, F. B., & Bernlohr, D. A. (2003). Fatty acid-binding protein-hormone-sensitive lipase interaction. Fatty acid dependence on binding. Journal of Biological Chemistry, 278(48), 47636-47643. https://doi.org/10.1074/jbc.M307680200
Jiang, B., Qiao, J., Yang, Y., & Lu, Y. (2012). Inhibitory effect of paeoniflorin on the inflammatory vicious cycle between adipocytes and macrophages. Journal of Cellular Biochemistry, 113(8), 2560-2566. https://doi.org/10.1002/jcb.22173
Kim, Y. I., Mohri, S., Hirai, S., Lin, S., Goto, T., Ohyane, C., … Kawada, T. (2015). Tomato extract suppresses the production of proinflammatory mediators induced by interaction between adipocytes and macrophages. Bioscience, Biotechnology, and Biochemistry, 79(1), 82-87. https://doi.org/10.1080/09168451.2014.962472
Kim, Y., Park, Y., Namkoong, S., & Lee, J. (2014). Esculetin inhibits the inflammatory response by inducing heme oxygenase-1 in cocultured macrophages and adipocytes. Food Funct, 5(9), 2371-2377. https://doi.org/10.1039/C4FO00351A
Liao, W., Ning, Z., Chen, L., Wei, Q., Yuan, E., Yang, J., & Ren, J. (2014). Intracellular antioxidant detoxifying effects of diosmetin on 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress through inhibition of reactive oxygen species generation. Journal of Agriculture and Food Chemistry, 62(34), 8648-8654. https://doi.org/10.1021/jf502359x
Liu, J., Wen, X., Liu, B., Zhang, Q., Zhang, J., Miao, H., & Zhu, R. (2016). Diosmetin inhibits the metastasis of hepatocellular carcinoma cells by downregulating the expression levels of MMP-2 and MMP-9. Molecular Medicine Reports, 13(3), 2401-2408. https://doi.org/10.3892/mmr.2016.4872
Manteiga, S., Choi, K., Jayaraman, A., & Lee, K. (2013). Systems biology of adipose tissue metabolism: Regulation of growth, signaling and inflammation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 5(4), 425-447. https://doi.org/10.1002/wsbm.1213
Namkoong, S., Sung, J., Yang, J., Choi, Y., Jeong, H. S., & Lee, J. (2017). Nobiletin attenuates the inflammatory response through Heme Oxygenase-1 induction in the crosstalk between adipocytes and macrophages. Journal of Medicinal Food, 20(9), 873-881. https://doi.org/10.1089/jmf.2017.3921
Nishina, A., Ukiya, M., Fukatsu, M., Koketsu, M., Ninomiya, M., Sato, D., … Kimura, H. (2015). Effects of various 5,7-dihydroxyflavone analogs on adipogenesis in 3T3-L1 Cells. Biological &/and Pharmaceutical Bulletin, 38(11), 1794-1800. https://doi.org/10.1248/bpb.b15-00489
Ohira, H., Fujioka, Y., Katagiri, C., Mamoto, R., Aoyama-Ishikawa, M., Amako, K., … Ikeda, M. (2013). Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. Journal of Atherosclerosis and Thrombosis, 20(5), 425-442. https://doi.org/10.5551/jat.15065
Okazaki, H., Osuga, J., Tamura, Y., Yahagi, N., Tomita, S., Shionoiri, F., … Ishibashi, S. (2002). Lipolysis in the absence of hormone-sensitive lipase: Evidence for a common mechanism regulating distinct lipases. Diabetes, 51(12), 3368-3375. https://doi.org/10.2337/diabetes.51.12.3368
Qin, Y., Chen, Y., & Li, J. (2016). Research progress of cell co-culture method. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 28(8), 765-768.
Shanmugam, K., Holmquist, L., Steele, M., Stuchbury, G., Berbaum, K., Schulz, O., … Münch, G. (2008). Plant-derived polyphenols attenuate lipopolysaccharide-induced nitric oxide and tumour necrosis factor production in murine microglia and macrophages. Molecular Nutrition & Food Research, 52(4), 427-438. https://doi.org/10.1002/mnfr.200700180
Shen, Z., Shao, J., Dai, J., Lin, Y., Yang, X., Ma, J., … Luo, P. (2016). Diosmetin protects against retinal injury via reduction of DNA damage and oxidative stress. Toxicology Reports, 3, 78-86. https://doi.org/10.1016/j.toxrep.2015.12.004
Suganami, T., Nishida, J., & Ogawa, Y. (2005). A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: Role of free fatty acids and tumor necrosis factor alpha. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(10), 2062-2068. https://doi.org/10.1161/01.ATV.0000183883.72263.13
Suganami, T., Tanimoto-Koyama, K., Nishida, J., Itoh, M., Yuan, X., Mizuarai, S., … Ogawa, Y. (2007). Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(1), 84-91.
Tsai, E. Y., Falvo, J. V., Tsytsykova, A. V., Barczak, A. K., Reimold, A. M., Glimcher, L. H., … Goldfeld, A. E. (2000). A lipopolysaccharide-specific enhancer complex involving Ets, Elk-1, Sp1, and CREB binding protein and p300 is recruited to the tumor necrosis factor alpha promoter in vivo. Molecular and Cellular Biology, 20(16), 6084-6094. https://doi.org/10.1128/MCB.20.16.6084-6094.2000
Wang, Y., Rangan, G. K., Goodwin, B., Tay, Y. C., & Harris, D. C. (2000). Lipopolysaccharide-induced MCP-1 gene expression in rat tubular epithelial cells is nuclear factor-kappaB dependent. Kidney International, 57(5), 2011-2022.
Weisberg, P. J., & Coughenour, M. B. (2003). Model-based assessment of aspen responses to elk herbivory in Rocky Mountain National Park, USA. Environmental Management, 32(1), 152-169. https://doi.org/10.1007/s00267-002-0029-3
Wellen, K. E., & Hotamisligil, G. S. (2003). Obesity-induced inflammatory changes in adipose tissue. Journal of Clinical Investigation, 112(12), 1785-1788. https://doi.org/10.1172/JCI20514
Xie, Q. W., Kashiwabara, Y., & Nathan, C. (1994). Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. Journal of Biological Chemistry, 269(7), 4705-4708.
Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., … Chen, H. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation, 112(12), 1821-1830. https://doi.org/10.1172/JCI200319451
Yang, K., Li, W. F., Yu, J. F., Yi, C., & Huang, W. F. (2017). Diosmetin protects against ischemia/reperfusion-induced acute kidney injury in mice. Journal of Surgical Research, 214, 69-78. https://doi.org/10.1016/j.jss.2017.02.067
Yu, G., Wan, R., Yin, G., Xiong, J., Hu, Y., Xing, M., … Hu, G. (2014). Diosmetin ameliorates the severity of cerulein-induced acute pancreatitis in mice by inhibiting the activation of the nuclear factor-kappaB. International Journal of Clinical and Experimental Pathology, 7(5), 2133-2142.
Yuan, M., Konstantopoulos, N., Lee, J., Hansen, L., Li, Z. W., Karin, M., & Shoelson, S. E. (2001). Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science, 293(5535), 1673-1677.

Auteurs

Hana Lee (H)

Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea.

Jeehye Sung (J)

Department of Food Science and Biotechnology, Andong National University, Andong, Korea.

Younghwa Kim (Y)

School of Food Biotechnology and Nutrition, Kyungsung University, Busan, Korea.

Heon Sang Jeong (HS)

Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea.

Junsoo Lee (J)

Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
C-Reactive Protein Humans Biomarkers Inflammation
Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation

Classifications MeSH