Sexual Dimorphism of Metabolomic Profile in Arterial Hypertension.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
05 05 2020
Historique:
received: 04 12 2019
accepted: 07 04 2020
entrez: 7 5 2020
pubmed: 7 5 2020
medline: 7 1 2021
Statut: epublish

Résumé

Metabolomic studies have demonstrated the existence of biological signatures in blood of patients with arterial hypertension, but no study has hitherto reported the sexual dimorphism of these signatures. We compared the plasma metabolomic profiles of 28 individuals (13 women and 15 men) with essential arterial hypertension with those of a healthy control group (18 women and 18 men), using targeted metabolomics. Among the 188 metabolites explored, 152 were accurately measured. Supervised OPLS-DA (orthogonal partial least squares-discriminant analysis) showed good predictive performance for hypertension in both sexes (Q

Identifiants

pubmed: 32371946
doi: 10.1038/s41598-020-64329-1
pii: 10.1038/s41598-020-64329-1
pmc: PMC7200712
doi:

Substances chimiques

Biomarkers 0
Phosphatidylcholines 0
Sphingomyelins 0
symmetric dimethylarginine 49787G1ULV
Arginine 94ZLA3W45F
Ornithine E524N2IXA3

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7517

Références

Poulter, N. R., Prabhakaran, D. & Caulfield, M. Hypertension. Lancet. 386, 801–12 (2015).
pubmed: 25832858 doi: 10.1016/S0140-6736(14)61468-9
Zhou, B. et al. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. NCD Risk Factor collaboration. Lancet. 389, 37–55 (2017).
doi: 10.1016/S0140-6736(16)31919-5
Fowkes, F. G. et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 382, 1329–40 (2013).
pubmed: 23915883 doi: 10.1016/S0140-6736(13)61249-0
Amah, G. & Lévy, B. I. Particularités de l’hypertension artérielle du sujet noir-africain. Sang Thrombose Vaisseaux (STV). 19, 519–25 (2007).
Adeloye, D. & Basquill, C. Estimating the prevalence and awareness rates of hypertension in Africa: a systematic analysis. PLoS One. 9, e104300 (2014).
pubmed: 25090232 pmcid: 4121276 doi: 10.1371/journal.pone.0104300
Bâ, H. O. et al. Hypertension and Associated Factors in Rural and Urban Areas Mali: Data from the STEP 2013 Survey. Int J Hypertens. 2018, 6959165 (2018).
pubmed: 29610681 pmcid: 5828104 doi: 10.1155/2018/6959165
Bosu, W. K., Aheto, J. M. K., Zucchelli, E. & Reilly, S. T. Determinants of systemic hypertension in older adults in Africa: a systematic review. BMC Cardiovasc. Disord. 19, 173 (2019).
pubmed: 31331284 pmcid: 6647089 doi: 10.1186/s12872-019-1147-7
Spence, J. D. & Rayner, B. L. Hypertension in Blacks Individualized Therapy Based on Renin/Aldosterone Phenotyping. Hypertension. 72, 263–69 (2018).
pubmed: 29941519 doi: 10.1161/HYPERTENSIONAHA.118.11064
Arnett, D. K. & Claas, S. A. Omics of Blood Pressure and Hypertension. Circ. Res. 122, 1409–1419 (2018).
pubmed: 29748366 doi: 10.1161/CIRCRESAHA.118.311342 pmcid: 29748366
Tzoulaki, I., Iliou, A., Mikros, E. & Elliott, P. An Overview of Metabolic Phenotyping in Blood Pressure Research. Curr. Hypertens. Rep. 20, 78 (2018).
pubmed: 29992526 pmcid: 6061189 doi: 10.1007/s11906-018-0877-8
Holmes, E. et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature. 453, 396–400 (2008).
pubmed: 18425110 pmcid: 6556779 doi: 10.1038/nature06882
Menni, C. et al. Metabolomic identification of a novel pathway of blood pressure regulation involving hexadecanedioate. Hypertension. 66, 422–9 (2015).
pubmed: 26034203 pmcid: 4490909 doi: 10.1161/HYPERTENSIONAHA.115.05544
Wang, L. et al. Reconstruction and analysis of correlation networks based on GC-MS metabolomics data for young hypertensive men. Anal. Chim. Acta. 854, 95–105 (2015).
pubmed: 25479872 doi: 10.1016/j.aca.2014.11.009
Dietrich, S. et al. Identification of Serum Metabolites Associated With Incident Hypertension in the European Prospective Investigation into Cancer and Nutrition-Potsdam Study. Hypertension. 68, 471–7 (2016).
pubmed: 27245178 doi: 10.1161/HYPERTENSIONAHA.116.07292
Ameta, K. et al. Essential hypertension: A filtered serum based metabolomics study. Sci. Rep. 7, 2153 (2017).
pubmed: 28526818 pmcid: 5438387 doi: 10.1038/s41598-017-02289-9
Zhao, H. et al. Identification of essential hypertension biomarkers in human urine by non-targeted metabolomics based on UPLC-Q-TOF/MS. Clin. Chim. Acta. 486, 192–198 (2018).
pubmed: 30092170 doi: 10.1016/j.cca.2018.08.006 pmcid: 30092170
Hernández-Aguilera, A. et al. Plasma Energy-Balance Metabolites Discriminate Asymptomatic Patients with Peripheral Artery Disease. Mediators Inflamm. 2018, 2760272 (2018).
pubmed: 30327580 pmcid: 6171256 doi: 10.1155/2018/2760272
Kulkarni, H. et al. Plasma lipidomic profile signature of hypertension in Mexican American families: specific role of diacylglycerols. Hypertension. 62, 621–6 (2013).
pubmed: 23798346 pmcid: 3789127 doi: 10.1161/HYPERTENSIONAHA.113.01396
Ke, C., Zhu, X., Zhang, Y. & Shen, Y. Metabolomic characterization of hypertension and dyslipidemia. Metabolomics. 14, 117 (2018).
pubmed: 30830367 doi: 10.1007/s11306-018-1408-y pmcid: 30830367
Loo, R. L., Zou, X., Appel, L. J., Nicholson, J. K. & Holmes, E. Characterization of metabolic responses to healthy diets and association with blood pressure: application to the Optimal Macronutrient Intake Trial for Heart Health (OmniHeart), a randomized controlled study. Am. J. Clin. Nutr. 107, 323–334 (2018).
pubmed: 29506183 doi: 10.1093/ajcn/nqx072
Chen, L. et al. Sodium Reduction, Metabolomic Profiling, and Cardiovascular Disease Risk in Untreated Black Hypertensives. Hypertension. 74, 194–200 (2019).
pubmed: 31079530 doi: 10.1161/HYPERTENSIONAHA.119.12880
Hu, C. et al. Application of plasma lipidomics in studying the response of patients with essential hypertension to antihypertensive drug therapy. Mol. Biosyst. 7, 3271–9 (2011).
pubmed: 22009255 doi: 10.1039/c1mb05342f
Kim, M., Jung, S., Kim, S. Y., Lee, S. H. & Lee, J. H. Prehypertension-associated elevation in circulating lysophosphatidlycholines, Lp-PLA2 activity, and oxidative stress. PLoS One. 9, e96735 (2014).
pubmed: 24800806 pmcid: 4011750 doi: 10.1371/journal.pone.0096735
Hiltunen, T. P., Rimpelä, J. M., Mohney, R. P., Stirdivant, S. M. & Kontula, K. K. Effects of four different antihypertensive drugs on plasma metabolomic profiles in patients with essential hypertension. PLoS One. 12, e0187729 (2017).
pubmed: 29121091 pmcid: 5679533 doi: 10.1371/journal.pone.0187729
Colafella, K. M. M. & Denton, K. M. Sex-specific differences in hypertension and associated cardiovascular disease. Nat. Rev. Nephrol. 14, 185–201 (2018).
pubmed: 29380817 doi: 10.1038/nrneph.2017.189
Ahmed, S., Hu, R., Leete, J. & Layton, A. T. Understanding sex differences in long-term blood pressure regulation: insights from experimental studies and computational modeling. Am. J. Physiol. Heart Circ. Physiol. 316, H1113–H1123 (2019).
pubmed: 30875261 doi: 10.1152/ajpheart.00035.2019
Benjamin, E. et al. Heart Disease and Stroke Statistics - 2017 Update: A Report From the American Heart Association. Circulation. 135, e146–e603 (2017).
pubmed: 28122885 pmcid: 5408160 doi: 10.1161/CIR.0000000000000485
Tadic, M., Cuspidi, C., Grassi, G. & Ivanovic, B. Gender-specific therapeutic approach in arterial hypertension - Challenges ahead. Pharmacol. Res. 141, 181–188 (2019).
pubmed: 30584913 doi: 10.1016/j.phrs.2018.12.021
Leruez, S. et al. P. A plasma metabolomic signature of the exfoliation syndrome involves amino acids, acyl-carnitines and polyamines. Invest. Ophthalmol. Vis. Sci. 59, 1025–1032 (2018).
pubmed: 29450546 doi: 10.1167/iovs.17-23055
Leruez, S. et al. The metabolomic signature of glaucoma points to mitochondrial dysfunction, senescence and polyamines deficiency. Invest. Ophthalmol. Vis Sci. 59, 4355–4361 (2018).
pubmed: 30193307 doi: 10.1167/iovs.18-24938
Eriksson, L. et al. Multi- and megavariate data analysis – Part I: Basic principles and applications. (MKS Umetrics AB, editor. Umea), (2006).
Graessler, J. et al. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS One. 4, e6261 (2009).
pubmed: 19603071 pmcid: 2705678 doi: 10.1371/journal.pone.0006261
Brites, P., Waterham, H. & Wanders, R. Functions and biosynthesis of plasmalogens in health and disease. Biochim. Biophys. Acta. 1636, 219–31 (2004).
pubmed: 15164770 doi: 10.1016/j.bbalip.2003.12.010
Au, A., Cheng, K. K. & Wei, L. K. Metabolomics, Lipidomics and Pharmacometabolomics of Human Hypertension. Adv. Exp. Med. Biol. 956, 599–613 (2017).
pubmed: 27722964 doi: 10.1007/5584_2016_79
Romanowicz, L. & Bankowski, E. Preeclampsia-associated alterations in sphingolipid composition of the umbilical cord artery. Clin. Biochem. 42, 1719–24 (2009).
pubmed: 19616530 doi: 10.1016/j.clinbiochem.2009.07.011
Dobierzewska, A., Soman, S., Illanes, S. E. & Morris, A. J. Plasma cross-gestational sphingolipidomic analyses reveal potential first trimester biomarkers of preeclampsia. PLoS One. 12, e0175118 (2017).
pubmed: 28384202 pmcid: 5383057 doi: 10.1371/journal.pone.0175118
Dorrance, A. M., Graham, D., Webb, R. C., Fraser, R. & Dominiczak, A. Increased membrane sphingomyelin and arachidonic acid in stroke-prone spontaneously hypertensive rats. Am. J. Hypertens. 14, 1149–53 (2001).
pubmed: 11724215 doi: 10.1016/S0895-7061(01)02188-4
Hanamatsu, H. et al. Altered levels of serum sphingomyelin and ceramide containing distinct acyl chains in young obese adults. Nutr. Diabetes. 4, e141 (2014).
pubmed: 25329603 pmcid: 4217001 doi: 10.1038/nutd.2014.38
Lana, A. et al. Urinary Metabolic Signature of Primary Aldosteronism: Gender and Subtype-Specific Alterations. Proteomics Clin. Appl. 13, e1800049 (2019).
pubmed: 30580498 doi: 10.1002/prca.201800049
Simko, F. et al. Effect of Ivabradine on a Hypertensive Heart and the Renin-Angiotensin-Aldosterone System in L-NAME-Induced Hypertension. Int. J. Mol. Sci. 19 (2018).
Achan, V. et al. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler. Thromb. Vasc. Biol. 23, 1455–9 (2003).
pubmed: 12805079 doi: 10.1161/01.ATV.0000081742.92006.59 pmcid: 12805079
Veldink, H. et al. Effects of chronic SDMA infusion on glomerular filtration rate, blood pressure, myocardial function and renal histology in C57BL6/J mice. Nephrol. Dial. Transplant. 28, 1434–9 (2013).
pubmed: 23291365 doi: 10.1093/ndt/gfs554
Bode-Böger, S. M. et al. Symmetrical dimethylarginine: a new combined parameter for renal function and extent of coronary artery disease. J. Am. Soc. Nephrol. 17, 1128–34 (2006).
pubmed: 16481412 doi: 10.1681/ASN.2005101119 pmcid: 16481412
Tain, Y. L. & Hsu, C.N. Toxic Dimethylarginines: Asymetric Dimethylarginine (ADMA) and Symetric Dimethylarginine (SDMA). Toxins (Basel). 9 (2017).
Schlesinger, S., Sonntag, S. R., Lieb, W. & Maas, R. Asymmetric and Symmetric Dimethylarginine as Risk Markers for Total Mortality and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Studies. PLoS One. 11, e0165811 (2016).
pubmed: 27812151 pmcid: 5094762 doi: 10.1371/journal.pone.0165811
Potočnjak, I. et al. Serum concentrations of asymmetric and symmetric dimethylarginine are associated with mortality in acute heart failure patients. Int. J. Cardiol. 261, 109–113 (2018).
pubmed: 29550017 pmcid: 6591136 doi: 10.1016/j.ijcard.2018.03.037
Zheng, H. K. et al. Metabolic reprogramming of the urea cycle pathway in experimental pulmonary arterial hypertension rats induced by monocrotaline. Respir. Res. 19, 94 (2018).
pubmed: 29751839 pmcid: 5948901 doi: 10.1186/s12931-018-0800-5
Eisenberg, T. et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428–1438 (2016).
pubmed: 27841876 pmcid: 5806691 doi: 10.1038/nm.4222
Toba, H. et al. Oral L-histidine exerts antihypertensive effects via central histamine H3 receptors and decreases nitric oxide content in the rostral ventrolateral medulla in spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 37, 62–8 (2010).
pubmed: 19566844 doi: 10.1111/j.1440-1681.2009.05227.x
Sved, A. F., Fernstrom, J. D. & Wurtman, R. J. Tyrosine administration reduces blood pressure and enhances brain norepinephrine release in spontaneously hypertensive rats. Proc. Natl. Acad. Sci. USA 76, 3511–4 (1979).
pubmed: 291018 doi: 10.1073/pnas.76.7.3511
Mitchell, B. M., Dorrance, A. M. & Webb, R. C. Phenylalanine improves dilation and blood pressure in GTP cyclohydrolase inhibition-induced hypertensive rats. J. Cardiovasc. Pharmacol. 43, 758–63 (2004).
pubmed: 15167268 doi: 10.1097/00005344-200406000-00004
Waldron, M., Patterson, S. D., Tallent, J. & Jeffries, O. The Effects of Oral Taurine on Resting Blood Pressure in Humans: a Meta-Analysis. Curr. Hypertens. Rep. 20, 81 (2018).
pubmed: 30006901 doi: 10.1007/s11906-018-0881-z
Bartosiewicz, J. et al. The activation of the kynurenine pathway in a rat model with renovascular hypertension. Exp. Biol. Med. (Maywood). 242, 750–761 (2017).
pubmed: 28165296 pmcid: 5363689 doi: 10.1177/1535370217693114
Nagy, B. M. et al. Importance of kynurenine in pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 313, L741–L751 (2017).
pubmed: 28705908 doi: 10.1152/ajplung.00517.2016
Strand, E. et al. Serum Acylcarnitines and Risk of Cardiovascular Death and Acute Myocardial Infarction in Patients With Stable Angina Pectoris. J. Am. Heart Assoc. 6 (2017).
Wang, T. J. et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J. Clin. Invest. 123, 4309–17 (2013).
pubmed: 24091325 pmcid: 3784523 doi: 10.1172/JCI64801
Zhenyukh, O. et al. Branched-chain amino acids promote endothelial dysfunction through increased reactive oxygen species generation and inflammation. J. Cell. Mol. Med. 22, 4948–4962 (2018).
pubmed: 30063118 pmcid: 6156282 doi: 10.1111/jcmm.13759
Teymoori, F., Asghari, G., Mirmiran, P. & Azizi, F. Dietary amino acids and incidence of hypertension: A principle component analysis approach. Sci. Rep. 7, 16838 (2017).
pubmed: 29203783 pmcid: 5715058 doi: 10.1038/s41598-017-17047-0
Scherrer, U., Randin, D., Vollenweider, P., Vollenweider, L. & Nicod, P. Nitric oxide release accounts for insulin’s vascular effects in humans. J. Clin. Invest. 94, 2511–5 (1994).
pubmed: 7989610 pmcid: 330085 doi: 10.1172/JCI117621
Meyer, M. R., Clegg, D. J., Prossnitz, E. R. & Barton, M. Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors. Acta Physiol. (Oxf). 203, 259–69 (2011).
pubmed: 21281456 pmcid: 3110567 doi: 10.1111/j.1748-1716.2010.02237.x
Kaufman, J. S., Durazo-Arvizu, R. A., Rotimi, C. N., McGee, D. L. & Cooper, R. S. Obesity and hypertension prevalence in populations of African origin. The Investigators of the International Collaborative Study of Hypertension in Blacks. Epidemiology. 7, 398–405 (1996).
pubmed: 8793366 doi: 10.1097/00001648-199607000-00010

Auteurs

Yaya Goïta (Y)

Faculté de Pharmacie, Université des Sciences, des Techniques et des Technologies, de Bamako, Mali.
Service de Cardiologie, Centre Hospitalier Universitaire Mère-Enfant (CHUME) et Laboratoire d'analyses de Biologie médicale et Anatomo-Pathologique, Centre Hospitalier Universitaire Hôpital du Mali, Bamako, Mali.
Departement de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.
Unité Mixte de Recherche Mitovasc, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Centre National de la Recherche Scientifique (CNRS) 6015, Université d'Angers, Angers, France.

Juan Manuel Chao de la Barca (JM)

Departement de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.
Unité Mixte de Recherche Mitovasc, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Centre National de la Recherche Scientifique (CNRS) 6015, Université d'Angers, Angers, France.

Asmaou Keïta (A)

Service de Cardiologie, Centre Hospitalier Universitaire Mère-Enfant (CHUME) et Laboratoire d'analyses de Biologie médicale et Anatomo-Pathologique, Centre Hospitalier Universitaire Hôpital du Mali, Bamako, Mali.

Mamadou Bocary Diarra (MB)

Service de Cardiologie, Centre Hospitalier Universitaire Mère-Enfant (CHUME) et Laboratoire d'analyses de Biologie médicale et Anatomo-Pathologique, Centre Hospitalier Universitaire Hôpital du Mali, Bamako, Mali.

Klétigui Casimir Dembélé (KC)

Faculté de Pharmacie, Université des Sciences, des Techniques et des Technologies, de Bamako, Mali.
Departement de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.
Unité Mixte de Recherche Mitovasc, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Centre National de la Recherche Scientifique (CNRS) 6015, Université d'Angers, Angers, France.

Floris Chabrun (F)

Departement de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.
Unité Mixte de Recherche Mitovasc, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Centre National de la Recherche Scientifique (CNRS) 6015, Université d'Angers, Angers, France.

Boubacar Sidiki Ibrahim Dramé (BSI)

Faculté de Pharmacie, Université des Sciences, des Techniques et des Technologies, de Bamako, Mali.
Laboratoire d'analyses de Biologie médicale et Anatomo-Pathologique, Centre Hospitalier Universitaire Hôpital du Mali, Bamako, Mali.

Yaya Kassogué (Y)

Faculté de Pharmacie, Université des Sciences, des Techniques et des Technologies, de Bamako, Mali.

Mahamadou Diakité (M)

Faculté de Pharmacie, Université des Sciences, des Techniques et des Technologies, de Bamako, Mali.

Delphine Mirebeau-Prunier (D)

Departement de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.
Unité Mixte de Recherche Mitovasc, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Centre National de la Recherche Scientifique (CNRS) 6015, Université d'Angers, Angers, France.

Bakary Mamadou Cissé (BM)

Faculté de Pharmacie, Université des Sciences, des Techniques et des Technologies, de Bamako, Mali.

Gilles Simard (G)

Departement de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.

Pascal Reynier (P)

Departement de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France. pareynier@chu-angers.fr.
Unité Mixte de Recherche Mitovasc, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Centre National de la Recherche Scientifique (CNRS) 6015, Université d'Angers, Angers, France. pareynier@chu-angers.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH