Sexual Dimorphism of Metabolomic Profile in Arterial Hypertension.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
05 05 2020
05 05 2020
Historique:
received:
04
12
2019
accepted:
07
04
2020
entrez:
7
5
2020
pubmed:
7
5
2020
medline:
7
1
2021
Statut:
epublish
Résumé
Metabolomic studies have demonstrated the existence of biological signatures in blood of patients with arterial hypertension, but no study has hitherto reported the sexual dimorphism of these signatures. We compared the plasma metabolomic profiles of 28 individuals (13 women and 15 men) with essential arterial hypertension with those of a healthy control group (18 women and 18 men), using targeted metabolomics. Among the 188 metabolites explored, 152 were accurately measured. Supervised OPLS-DA (orthogonal partial least squares-discriminant analysis) showed good predictive performance for hypertension in both sexes (Q
Identifiants
pubmed: 32371946
doi: 10.1038/s41598-020-64329-1
pii: 10.1038/s41598-020-64329-1
pmc: PMC7200712
doi:
Substances chimiques
Biomarkers
0
Phosphatidylcholines
0
Sphingomyelins
0
symmetric dimethylarginine
49787G1ULV
Arginine
94ZLA3W45F
Ornithine
E524N2IXA3
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7517Références
Poulter, N. R., Prabhakaran, D. & Caulfield, M. Hypertension. Lancet. 386, 801–12 (2015).
pubmed: 25832858
doi: 10.1016/S0140-6736(14)61468-9
Zhou, B. et al. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. NCD Risk Factor collaboration. Lancet. 389, 37–55 (2017).
doi: 10.1016/S0140-6736(16)31919-5
Fowkes, F. G. et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 382, 1329–40 (2013).
pubmed: 23915883
doi: 10.1016/S0140-6736(13)61249-0
Amah, G. & Lévy, B. I. Particularités de l’hypertension artérielle du sujet noir-africain. Sang Thrombose Vaisseaux (STV). 19, 519–25 (2007).
Adeloye, D. & Basquill, C. Estimating the prevalence and awareness rates of hypertension in Africa: a systematic analysis. PLoS One. 9, e104300 (2014).
pubmed: 25090232
pmcid: 4121276
doi: 10.1371/journal.pone.0104300
Bâ, H. O. et al. Hypertension and Associated Factors in Rural and Urban Areas Mali: Data from the STEP 2013 Survey. Int J Hypertens. 2018, 6959165 (2018).
pubmed: 29610681
pmcid: 5828104
doi: 10.1155/2018/6959165
Bosu, W. K., Aheto, J. M. K., Zucchelli, E. & Reilly, S. T. Determinants of systemic hypertension in older adults in Africa: a systematic review. BMC Cardiovasc. Disord. 19, 173 (2019).
pubmed: 31331284
pmcid: 6647089
doi: 10.1186/s12872-019-1147-7
Spence, J. D. & Rayner, B. L. Hypertension in Blacks Individualized Therapy Based on Renin/Aldosterone Phenotyping. Hypertension. 72, 263–69 (2018).
pubmed: 29941519
doi: 10.1161/HYPERTENSIONAHA.118.11064
Arnett, D. K. & Claas, S. A. Omics of Blood Pressure and Hypertension. Circ. Res. 122, 1409–1419 (2018).
pubmed: 29748366
doi: 10.1161/CIRCRESAHA.118.311342
pmcid: 29748366
Tzoulaki, I., Iliou, A., Mikros, E. & Elliott, P. An Overview of Metabolic Phenotyping in Blood Pressure Research. Curr. Hypertens. Rep. 20, 78 (2018).
pubmed: 29992526
pmcid: 6061189
doi: 10.1007/s11906-018-0877-8
Holmes, E. et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature. 453, 396–400 (2008).
pubmed: 18425110
pmcid: 6556779
doi: 10.1038/nature06882
Menni, C. et al. Metabolomic identification of a novel pathway of blood pressure regulation involving hexadecanedioate. Hypertension. 66, 422–9 (2015).
pubmed: 26034203
pmcid: 4490909
doi: 10.1161/HYPERTENSIONAHA.115.05544
Wang, L. et al. Reconstruction and analysis of correlation networks based on GC-MS metabolomics data for young hypertensive men. Anal. Chim. Acta. 854, 95–105 (2015).
pubmed: 25479872
doi: 10.1016/j.aca.2014.11.009
Dietrich, S. et al. Identification of Serum Metabolites Associated With Incident Hypertension in the European Prospective Investigation into Cancer and Nutrition-Potsdam Study. Hypertension. 68, 471–7 (2016).
pubmed: 27245178
doi: 10.1161/HYPERTENSIONAHA.116.07292
Ameta, K. et al. Essential hypertension: A filtered serum based metabolomics study. Sci. Rep. 7, 2153 (2017).
pubmed: 28526818
pmcid: 5438387
doi: 10.1038/s41598-017-02289-9
Zhao, H. et al. Identification of essential hypertension biomarkers in human urine by non-targeted metabolomics based on UPLC-Q-TOF/MS. Clin. Chim. Acta. 486, 192–198 (2018).
pubmed: 30092170
doi: 10.1016/j.cca.2018.08.006
pmcid: 30092170
Hernández-Aguilera, A. et al. Plasma Energy-Balance Metabolites Discriminate Asymptomatic Patients with Peripheral Artery Disease. Mediators Inflamm. 2018, 2760272 (2018).
pubmed: 30327580
pmcid: 6171256
doi: 10.1155/2018/2760272
Kulkarni, H. et al. Plasma lipidomic profile signature of hypertension in Mexican American families: specific role of diacylglycerols. Hypertension. 62, 621–6 (2013).
pubmed: 23798346
pmcid: 3789127
doi: 10.1161/HYPERTENSIONAHA.113.01396
Ke, C., Zhu, X., Zhang, Y. & Shen, Y. Metabolomic characterization of hypertension and dyslipidemia. Metabolomics. 14, 117 (2018).
pubmed: 30830367
doi: 10.1007/s11306-018-1408-y
pmcid: 30830367
Loo, R. L., Zou, X., Appel, L. J., Nicholson, J. K. & Holmes, E. Characterization of metabolic responses to healthy diets and association with blood pressure: application to the Optimal Macronutrient Intake Trial for Heart Health (OmniHeart), a randomized controlled study. Am. J. Clin. Nutr. 107, 323–334 (2018).
pubmed: 29506183
doi: 10.1093/ajcn/nqx072
Chen, L. et al. Sodium Reduction, Metabolomic Profiling, and Cardiovascular Disease Risk in Untreated Black Hypertensives. Hypertension. 74, 194–200 (2019).
pubmed: 31079530
doi: 10.1161/HYPERTENSIONAHA.119.12880
Hu, C. et al. Application of plasma lipidomics in studying the response of patients with essential hypertension to antihypertensive drug therapy. Mol. Biosyst. 7, 3271–9 (2011).
pubmed: 22009255
doi: 10.1039/c1mb05342f
Kim, M., Jung, S., Kim, S. Y., Lee, S. H. & Lee, J. H. Prehypertension-associated elevation in circulating lysophosphatidlycholines, Lp-PLA2 activity, and oxidative stress. PLoS One. 9, e96735 (2014).
pubmed: 24800806
pmcid: 4011750
doi: 10.1371/journal.pone.0096735
Hiltunen, T. P., Rimpelä, J. M., Mohney, R. P., Stirdivant, S. M. & Kontula, K. K. Effects of four different antihypertensive drugs on plasma metabolomic profiles in patients with essential hypertension. PLoS One. 12, e0187729 (2017).
pubmed: 29121091
pmcid: 5679533
doi: 10.1371/journal.pone.0187729
Colafella, K. M. M. & Denton, K. M. Sex-specific differences in hypertension and associated cardiovascular disease. Nat. Rev. Nephrol. 14, 185–201 (2018).
pubmed: 29380817
doi: 10.1038/nrneph.2017.189
Ahmed, S., Hu, R., Leete, J. & Layton, A. T. Understanding sex differences in long-term blood pressure regulation: insights from experimental studies and computational modeling. Am. J. Physiol. Heart Circ. Physiol. 316, H1113–H1123 (2019).
pubmed: 30875261
doi: 10.1152/ajpheart.00035.2019
Benjamin, E. et al. Heart Disease and Stroke Statistics - 2017 Update: A Report From the American Heart Association. Circulation. 135, e146–e603 (2017).
pubmed: 28122885
pmcid: 5408160
doi: 10.1161/CIR.0000000000000485
Tadic, M., Cuspidi, C., Grassi, G. & Ivanovic, B. Gender-specific therapeutic approach in arterial hypertension - Challenges ahead. Pharmacol. Res. 141, 181–188 (2019).
pubmed: 30584913
doi: 10.1016/j.phrs.2018.12.021
Leruez, S. et al. P. A plasma metabolomic signature of the exfoliation syndrome involves amino acids, acyl-carnitines and polyamines. Invest. Ophthalmol. Vis. Sci. 59, 1025–1032 (2018).
pubmed: 29450546
doi: 10.1167/iovs.17-23055
Leruez, S. et al. The metabolomic signature of glaucoma points to mitochondrial dysfunction, senescence and polyamines deficiency. Invest. Ophthalmol. Vis Sci. 59, 4355–4361 (2018).
pubmed: 30193307
doi: 10.1167/iovs.18-24938
Eriksson, L. et al. Multi- and megavariate data analysis – Part I: Basic principles and applications. (MKS Umetrics AB, editor. Umea), (2006).
Graessler, J. et al. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS One. 4, e6261 (2009).
pubmed: 19603071
pmcid: 2705678
doi: 10.1371/journal.pone.0006261
Brites, P., Waterham, H. & Wanders, R. Functions and biosynthesis of plasmalogens in health and disease. Biochim. Biophys. Acta. 1636, 219–31 (2004).
pubmed: 15164770
doi: 10.1016/j.bbalip.2003.12.010
Au, A., Cheng, K. K. & Wei, L. K. Metabolomics, Lipidomics and Pharmacometabolomics of Human Hypertension. Adv. Exp. Med. Biol. 956, 599–613 (2017).
pubmed: 27722964
doi: 10.1007/5584_2016_79
Romanowicz, L. & Bankowski, E. Preeclampsia-associated alterations in sphingolipid composition of the umbilical cord artery. Clin. Biochem. 42, 1719–24 (2009).
pubmed: 19616530
doi: 10.1016/j.clinbiochem.2009.07.011
Dobierzewska, A., Soman, S., Illanes, S. E. & Morris, A. J. Plasma cross-gestational sphingolipidomic analyses reveal potential first trimester biomarkers of preeclampsia. PLoS One. 12, e0175118 (2017).
pubmed: 28384202
pmcid: 5383057
doi: 10.1371/journal.pone.0175118
Dorrance, A. M., Graham, D., Webb, R. C., Fraser, R. & Dominiczak, A. Increased membrane sphingomyelin and arachidonic acid in stroke-prone spontaneously hypertensive rats. Am. J. Hypertens. 14, 1149–53 (2001).
pubmed: 11724215
doi: 10.1016/S0895-7061(01)02188-4
Hanamatsu, H. et al. Altered levels of serum sphingomyelin and ceramide containing distinct acyl chains in young obese adults. Nutr. Diabetes. 4, e141 (2014).
pubmed: 25329603
pmcid: 4217001
doi: 10.1038/nutd.2014.38
Lana, A. et al. Urinary Metabolic Signature of Primary Aldosteronism: Gender and Subtype-Specific Alterations. Proteomics Clin. Appl. 13, e1800049 (2019).
pubmed: 30580498
doi: 10.1002/prca.201800049
Simko, F. et al. Effect of Ivabradine on a Hypertensive Heart and the Renin-Angiotensin-Aldosterone System in L-NAME-Induced Hypertension. Int. J. Mol. Sci. 19 (2018).
Achan, V. et al. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler. Thromb. Vasc. Biol. 23, 1455–9 (2003).
pubmed: 12805079
doi: 10.1161/01.ATV.0000081742.92006.59
pmcid: 12805079
Veldink, H. et al. Effects of chronic SDMA infusion on glomerular filtration rate, blood pressure, myocardial function and renal histology in C57BL6/J mice. Nephrol. Dial. Transplant. 28, 1434–9 (2013).
pubmed: 23291365
doi: 10.1093/ndt/gfs554
Bode-Böger, S. M. et al. Symmetrical dimethylarginine: a new combined parameter for renal function and extent of coronary artery disease. J. Am. Soc. Nephrol. 17, 1128–34 (2006).
pubmed: 16481412
doi: 10.1681/ASN.2005101119
pmcid: 16481412
Tain, Y. L. & Hsu, C.N. Toxic Dimethylarginines: Asymetric Dimethylarginine (ADMA) and Symetric Dimethylarginine (SDMA). Toxins (Basel). 9 (2017).
Schlesinger, S., Sonntag, S. R., Lieb, W. & Maas, R. Asymmetric and Symmetric Dimethylarginine as Risk Markers for Total Mortality and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Studies. PLoS One. 11, e0165811 (2016).
pubmed: 27812151
pmcid: 5094762
doi: 10.1371/journal.pone.0165811
Potočnjak, I. et al. Serum concentrations of asymmetric and symmetric dimethylarginine are associated with mortality in acute heart failure patients. Int. J. Cardiol. 261, 109–113 (2018).
pubmed: 29550017
pmcid: 6591136
doi: 10.1016/j.ijcard.2018.03.037
Zheng, H. K. et al. Metabolic reprogramming of the urea cycle pathway in experimental pulmonary arterial hypertension rats induced by monocrotaline. Respir. Res. 19, 94 (2018).
pubmed: 29751839
pmcid: 5948901
doi: 10.1186/s12931-018-0800-5
Eisenberg, T. et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428–1438 (2016).
pubmed: 27841876
pmcid: 5806691
doi: 10.1038/nm.4222
Toba, H. et al. Oral L-histidine exerts antihypertensive effects via central histamine H3 receptors and decreases nitric oxide content in the rostral ventrolateral medulla in spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 37, 62–8 (2010).
pubmed: 19566844
doi: 10.1111/j.1440-1681.2009.05227.x
Sved, A. F., Fernstrom, J. D. & Wurtman, R. J. Tyrosine administration reduces blood pressure and enhances brain norepinephrine release in spontaneously hypertensive rats. Proc. Natl. Acad. Sci. USA 76, 3511–4 (1979).
pubmed: 291018
doi: 10.1073/pnas.76.7.3511
Mitchell, B. M., Dorrance, A. M. & Webb, R. C. Phenylalanine improves dilation and blood pressure in GTP cyclohydrolase inhibition-induced hypertensive rats. J. Cardiovasc. Pharmacol. 43, 758–63 (2004).
pubmed: 15167268
doi: 10.1097/00005344-200406000-00004
Waldron, M., Patterson, S. D., Tallent, J. & Jeffries, O. The Effects of Oral Taurine on Resting Blood Pressure in Humans: a Meta-Analysis. Curr. Hypertens. Rep. 20, 81 (2018).
pubmed: 30006901
doi: 10.1007/s11906-018-0881-z
Bartosiewicz, J. et al. The activation of the kynurenine pathway in a rat model with renovascular hypertension. Exp. Biol. Med. (Maywood). 242, 750–761 (2017).
pubmed: 28165296
pmcid: 5363689
doi: 10.1177/1535370217693114
Nagy, B. M. et al. Importance of kynurenine in pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 313, L741–L751 (2017).
pubmed: 28705908
doi: 10.1152/ajplung.00517.2016
Strand, E. et al. Serum Acylcarnitines and Risk of Cardiovascular Death and Acute Myocardial Infarction in Patients With Stable Angina Pectoris. J. Am. Heart Assoc. 6 (2017).
Wang, T. J. et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J. Clin. Invest. 123, 4309–17 (2013).
pubmed: 24091325
pmcid: 3784523
doi: 10.1172/JCI64801
Zhenyukh, O. et al. Branched-chain amino acids promote endothelial dysfunction through increased reactive oxygen species generation and inflammation. J. Cell. Mol. Med. 22, 4948–4962 (2018).
pubmed: 30063118
pmcid: 6156282
doi: 10.1111/jcmm.13759
Teymoori, F., Asghari, G., Mirmiran, P. & Azizi, F. Dietary amino acids and incidence of hypertension: A principle component analysis approach. Sci. Rep. 7, 16838 (2017).
pubmed: 29203783
pmcid: 5715058
doi: 10.1038/s41598-017-17047-0
Scherrer, U., Randin, D., Vollenweider, P., Vollenweider, L. & Nicod, P. Nitric oxide release accounts for insulin’s vascular effects in humans. J. Clin. Invest. 94, 2511–5 (1994).
pubmed: 7989610
pmcid: 330085
doi: 10.1172/JCI117621
Meyer, M. R., Clegg, D. J., Prossnitz, E. R. & Barton, M. Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors. Acta Physiol. (Oxf). 203, 259–69 (2011).
pubmed: 21281456
pmcid: 3110567
doi: 10.1111/j.1748-1716.2010.02237.x
Kaufman, J. S., Durazo-Arvizu, R. A., Rotimi, C. N., McGee, D. L. & Cooper, R. S. Obesity and hypertension prevalence in populations of African origin. The Investigators of the International Collaborative Study of Hypertension in Blacks. Epidemiology. 7, 398–405 (1996).
pubmed: 8793366
doi: 10.1097/00001648-199607000-00010