Evolution of Neuropeptide Precursors in Polyneoptera (Insecta).


Journal

Frontiers in endocrinology
ISSN: 1664-2392
Titre abrégé: Front Endocrinol (Lausanne)
Pays: Switzerland
ID NLM: 101555782

Informations de publication

Date de publication:
2020
Historique:
received: 30 01 2020
accepted: 19 03 2020
entrez: 7 5 2020
pubmed: 7 5 2020
medline: 2 4 2021
Statut: epublish

Résumé

Neuropeptides are among the structurally most diverse signaling molecules and participate in intercellular information transfer from neurotransmission to intrinsic or extrinsic neuromodulation. Many of the peptidergic systems have a very ancient origin that can be traced back to the early evolution of the Metazoa. In recent years, new insights into the evolution of these peptidergic systems resulted from the increasing availability of genome and transcriptome data which facilitated the investigation of the complete neuropeptide precursor sequences. Here we used a comprehensive transcriptome dataset of about 200 species from the 1KITE initiative to study the evolution of single-copy neuropeptide precursors in Polyneoptera. This group comprises well-known orders such as cockroaches, termites, locusts, and stick insects. Due to their phylogenetic position within the insects and the large number of old lineages, these insects are ideal candidates for studying the evolution of insect neuropeptides and their precursors. Our analyses include the orthologs of 21 single-copy neuropeptide precursors, namely ACP, allatotropin, AST-CC, AST-CCC, CCAP, CCHamide-1 and 2, CNMamide, corazonin, CRF-DH, CT-DH, elevenin, HanSolin, NPF-1 and 2, MS, proctolin, RFLamide, SIFamide, sNPF, and trissin. Based on the sequences obtained, the degree of sequence conservation between and within the different polyneopteran lineages is discussed. Furthermore, the data are used to postulate the individual neuropeptide sequences that were present at the time of the insect emergence more than 400 million years ago. The data confirm that the extent of sequence conservation across Polyneoptera is remarkably different between the different neuropeptides. Furthermore, the average evolutionary distance for the single-copy neuropeptides differs significantly between the polyneopteran orders. Nonetheless, the single-copy neuropeptide precursors of the Polyneoptera show a relatively high degree of sequence conservation. Basic features of these precursors in this very heterogeneous insect group are explained here in detail for the first time.

Identifiants

pubmed: 32373067
doi: 10.3389/fendo.2020.00197
pmc: PMC7179676
doi:

Substances chimiques

CCH-amide-1 neuropeptide, Drosophila 0
CCH-amide-2 neuropeptide, Drosophila 0
Drosophila Proteins 0
Insect Hormones 0
Insect Proteins 0
Neuropeptides 0
Oligopeptides 0
Protein Precursors 0
crustacean cardioactive peptide 0
corazonin protein, insect 122984-73-0
proctolin 57966-42-4
allatotropin 75831-28-6

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

197

Informations de copyright

Copyright © 2020 Bläser and Predel.

Références

Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3024-3029
pubmed: 30642969
Genome Biol. 2008;9(8):R131
pubmed: 18717992
Proc Natl Acad Sci U S A. 2013 May 28;110(22):E2028-37
pubmed: 23671109
J Proteome Res. 2010 Oct 1;9(10):5296-310
pubmed: 20695486
J Comp Neurol. 2015 Jan 1;523(1):108-25
pubmed: 25185792
Genome Res. 2004 Jun;14(6):1188-90
pubmed: 15173120
Front Physiol. 2014 Nov 19;5:454
pubmed: 25477824
Insect Biochem Mol Biol. 2018 Oct;101:94-107
pubmed: 30165105
Gen Comp Endocrinol. 2016 May 1;230-231:153-7
pubmed: 27102937
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8702-7
pubmed: 23637342
PeerJ. 2019 Jun 17;7:e7144
pubmed: 31245184
Prog Neurobiol. 2019 Aug;179:101607
pubmed: 30905728
J Comp Neurol. 2012 Mar 1;520(4):694-716
pubmed: 21826660
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549
pubmed: 29722887
BMC Evol Biol. 2016 Feb 29;16:51
pubmed: 26923142
Nature. 2015 Nov 26;527(7579):459-65
pubmed: 26580012
Insect Mol Biol. 2010 Mar;19 Suppl 2:87-95
pubmed: 20482642
Proteomics. 2009 Feb;9(3):788-92
pubmed: 19137558
J Proteome Res. 2018 Jan 5;17(1):440-454
pubmed: 29148801
Syst Biol. 2012 Jul;61(4):609-29
pubmed: 22508719
Science. 2014 Nov 7;346(6210):763-7
pubmed: 25378627
J Exp Biol. 2018 Feb 9;221(Pt 3):
pubmed: 29440283
BMC Genomics. 2006 Aug 09;7:201
pubmed: 16899111
Science. 1986 Oct 3;234(4772):71-3
pubmed: 3749893
Insect Biochem Mol Biol. 2020 Mar;118:103309
pubmed: 31870847
Mol Phylogenet Evol. 2020 Feb;143:106686
pubmed: 31740335
Peptides. 2007 Jan;28(1):3-10
pubmed: 17140699
J Proteome Res. 2010 Apr 5;9(4):2006-15
pubmed: 20163154
Annu Rev Entomol. 2017 Jan 31;62:35-52
pubmed: 27813667
Genome Res. 2008 Jan;18(1):113-22
pubmed: 18025266
Science. 2006 Oct 27;314(5799):647-9
pubmed: 17068263
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W597-603
pubmed: 22661580
Mol Biol Evol. 2005 Nov;22(11):2275-84
pubmed: 16049193
Insect Biochem Mol Biol. 2017 Jul;86:9-19
pubmed: 28502574
J Proteome Res. 2018 Jun 1;17(6):2192-2204
pubmed: 29701990
Cell Rep. 2015 Jul 28;12(4):684-93
pubmed: 26190115

Auteurs

Marcel Bläser (M)

Department of Biology, Institute for Zoology, University of Cologne, Cologne, Germany.

Reinhard Predel (R)

Department of Biology, Institute for Zoology, University of Cologne, Cologne, Germany.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH