Ischemic postconditioning attenuates the inflammatory response in ischemia/reperfusion myocardium by upregulating miR‑499 and inhibiting TLR2 activation.
microRNA‑499
toll‑like receptor 2
ischemic postconditioning
protein kinase C
inflammation
Journal
Molecular medicine reports
ISSN: 1791-3004
Titre abrégé: Mol Med Rep
Pays: Greece
ID NLM: 101475259
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
09
09
2019
accepted:
25
03
2020
pubmed:
8
5
2020
medline:
17
2
2021
entrez:
8
5
2020
Statut:
ppublish
Résumé
Toll-like receptor 2 (TLR2)-mediated myocardial inflammation serves an important role in promoting myocardial ischemic/reperfusion (I/R) injury. Previous studies have shown that miR‑499 is critical for cardioprotection after ischemic postconditioning (IPostC). Therefore, the present study evaluated the protective effect of IPostC on the myocardium by inhibiting TLR2, and also assessed the involvement of microRNA (miR)‑499. Rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. The IPostC was 3 cycles of 30 sec of reperfusion and 30 sec of re‑occlusion prior to reperfusion. In total, 90 rats were randomly divided into six groups (n=15 per group): Sham; I/R; IPostC; miR‑499 negative control adeno‑associated virus (AAV) vectors + IPostC; miR‑499 inhibitor AAV vectors + IPostC; and miR‑499 mimic AAV vectors + IPostC. It was identified that IPostC significantly decreased the I/R‑induced cardiomyocyte apoptotic index (29.4±2.03% in IPostC vs. 42.64±2.27% in I/R; P<0.05) and myocardial infarct size (48.53±2.49% in IPostC vs. 66.52±3.1% in I/R; P<0.05). Moreover, these beneficial effects were accompanied by increased miR‑499 expression levels (as demonstrated by reverse transcription‑quantitative PCR) in the myocardial tissue and decreased TLR2, protein kinase C (PKC), interleukin (IL)‑1β and IL‑6 expression levels (as demonstrated by western blotting and ELISA) in the myocardium and serum. The results indicated that IPostC + miR‑499 mimics significantly inhibited inflammation and the PKC signaling pathway and enhanced the anti‑inflammatory and anti‑apoptotic effects of IPostC. However, IPostC + miR‑499 inhibitors had the opposite effect. Therefore, it was speculated that IPostC may have a miR‑499‑dependent cardioprotective effect. The present results suggested that miR‑499 may be involved in IPostC‑mediated ischemic cardioprotection, which may occur via local and systemic TLR2 inhibition, subsequent inhibition of the PKC signaling pathway and a decrease in inflammatory cytokine release, including IL‑1β and IL‑6. Moreover, these effects will ultimately lead to a decrease in the myocardial apoptotic index and myocardial infarct size via the induction of the anti‑apoptotic protein Bcl‑2, and inhibition of the pro‑apoptotic protein Bax in myocardium.
Identifiants
pubmed: 32377693
doi: 10.3892/mmr.2020.11104
pmc: PMC7248531
doi:
Substances chimiques
MIRN499 microRNA, rat
0
MicroRNAs
0
Tlr2 protein, rat
0
Toll-Like Receptor 2
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
209-218Références
Curr Top Microbiol Immunol. 2017;410:249-267
pubmed: 28900683
J Neuroinflammation. 2014 Jan 24;11:15
pubmed: 24460643
Am J Cardiol. 2010 Aug 1;106(3):360-8
pubmed: 20643246
J Immunol. 2015 Feb 1;194(3):1190-8
pubmed: 25539820
Circulation. 2010 Jan 5;121(1):80-90
pubmed: 20026776
Eur Heart J. 2017 Apr 1;38(13):935-941
pubmed: 27118196
Inflamm Res. 2016 Jun;65(6):489-99
pubmed: 26935770
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Oncotarget. 2016 Jun 14;7(24):35607-35617
pubmed: 27231854
Front Physiol. 2014 Dec 18;5:496
pubmed: 25566092
J Surg Res. 2014 Jun 15;189(2):198-206
pubmed: 24742623
J Physiol Biochem. 2020 Feb;76(1):1-12
pubmed: 31808077
Circulation. 2005 Oct 4;112(14):2143-8
pubmed: 16186417
Ann Transl Med. 2016 Apr;4(7):135
pubmed: 27162785
Cardiovasc Res. 2010 Sep 1;87(4):694-703
pubmed: 20421349
Mol Cell Biochem. 2011 Dec;358(1-2):335-43
pubmed: 21766206
Gastroenterology. 2004 Jul;127(1):224-38
pubmed: 15236188
Apoptosis. 2016 Feb;21(2):174-83
pubmed: 26659076
J Cell Mol Med. 2017 Sep;21(9):2009-2021
pubmed: 28266127
Inflammopharmacology. 2019 Oct;27(5):1071-1080
pubmed: 30929154
Zhong Xi Yi Jie He Xue Bao. 2010 May;8(5):465-71
pubmed: 20456846
Eur Heart J. 2012 May;33(9):1085-94
pubmed: 21998404
Circ Cardiovasc Interv. 2012 Apr;5(2):279-87
pubmed: 22354933
Adv Clin Exp Med. 2017 Aug;26(5):865-874
pubmed: 29068585
Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H503-9
pubmed: 16980352
Circulation. 1993 Mar;87(3):893-9
pubmed: 7680290
Biochem Biophys Res Commun. 2013 Jan 18;430(3):933-7
pubmed: 23261454
Basic Res Cardiol. 2009 Sep;104(5):469-83
pubmed: 19543787
J Transl Med. 2013 Jun 21;11:154
pubmed: 23800236
Crit Care Med. 2010 Mar;38(3):1003-4
pubmed: 20168168
Am J Physiol Heart Circ Physiol. 2010 Mar;298(3):H1079-87
pubmed: 20061547
Heart Rhythm. 2017 May;14(5):727-736
pubmed: 28111350
Ann Rheum Dis. 2008 Dec;67 Suppl 3:iii50-5
pubmed: 19022814
Cell Physiol Biochem. 2016;39(6):2364-2380
pubmed: 27832626
Exp Gerontol. 2015 Dec;72:230-8
pubmed: 26526403
Mol Med. 2014 Jun 09;20:280-9
pubmed: 24918749
Crit Care Med. 2010 Mar;38(3):903-9
pubmed: 20081527
Cell Physiol Biochem. 2018;49(3):1049-1063
pubmed: 30196287
F1000Res. 2018 Nov 20;7:1819
pubmed: 30631444
Biochem Biophys Res Commun. 2012 Oct 26;427(3):666-70
pubmed: 23026048
Circulation. 2002 Dec 3;106(23):2881-3
pubmed: 12460865
Clin Exp Immunol. 2009 Jun;156(3):386-94
pubmed: 19309349
Mediators Inflamm. 2010;2010:704202
pubmed: 20628516