Crossing the pond: genetic assignment detects lobster hybridisation.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
08 05 2020
Historique:
received: 22 11 2019
accepted: 03 04 2020
entrez: 10 5 2020
pubmed: 10 5 2020
medline: 2 12 2020
Statut: epublish

Résumé

American lobsters (Homarus americanus) imported live into Europe as a seafood commodity have occasionally been released or escaped into the wild, within the range of an allopatric congener, the European lobster (H. gammarus). In addition to disease and competition, introduced lobsters threaten native populations through hybridisation, but morphological discriminants used for species identification are unable to discern hybrids, so molecular methods are required. We tested an array of 79 single nucleotide polymorphisms (SNPs) for their utility to distinguish 1,308 H. gammarus from 38 H. americanus and 30 hybrid offspring from an American female captured in Sweden. These loci provide powerful species assignment in Homarus, enabling the robust identification of hybrid and American individuals among a survey of European stock. Moreover, a subset panel of the 12 most powerful SNPs is sufficient to separate the two pure species, even when tissues have been cooked, and can detect the introduced component of hybrids. We conclude that these SNP loci can unambiguously identify hybrid lobsters that may be undetectable via basic morphology, and offer a valuable tool to investigate the prevalence of cryptic hybridisation in the wild. Such investigations are required to properly evaluate the potential for introgression of alien genes into European lobster populations.

Identifiants

pubmed: 32385382
doi: 10.1038/s41598-020-64692-z
pii: 10.1038/s41598-020-64692-z
pmc: PMC7210874
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7781

Références

Muhlfeld, C. C. et al. Hybridization rapidly reduces fitness of a native trout in the wild. Biol. Lett. 5, 328–331 (2009).
doi: 10.1098/rsbl.2009.0033
Muhlfeld, C. C. et al. Legacy introductions and climatic variation explain spatiotemporal patterns of invasive hybridization in a native trout. Global Change Biol. 23, 4663–4674 (2017).
doi: 10.1111/gcb.13681
Goodman, S. J., Barton, N. H., Swanson, G., Abernethy, K. & Pemberton, J. M. Introgression through rare hybridization: a genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics 152, 355–371 (1999).
pubmed: 10224266 pmcid: 1460577
Chan, W. Y., Peplow, L. M., Menéndez, P., Hoffmann, A. A. & van Oppen, M. J. Interspecific hybridization may provide novel opportunities for coral reef restoration. Front. Mar. Sci. 5, 160 (2018).
doi: 10.3389/fmars.2018.00160
Rhymer, J. L. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83–109 (1996).
doi: 10.1146/annurev.ecolsys.27.1.83
Allendorf, F. W., Leary, R. F., Spruell, P. & Wenburg, J. K. The problems with hybrids: setting conservation guidelines. Trends Ecol. Evol. 16, 613–622 (2001).
doi: 10.1016/S0169-5347(01)02290-X
Barilani, M. et al. Detecting hybridization in wild (Coturnix c. coturnix) and domesticated (Coturnix c. japonica) quail populations. Biol. Conserv. 126, 445–455 (2005).
doi: 10.1016/j.biocon.2005.06.027
Senn, H. V. et al. Distinguishing the victim from the threat: SNP-based methods reveal the extent of introgressive hybridization between wildcats and domestic cats in Scotland and inform future in situ and ex situ management options for species restoration. Evol. Apps. 12, 399–414 (2019).
doi: 10.1111/eva.12720
Kleiven, A. R., Olsen, E. M. & Vølstad, J. H. Total catch of a Red-Listed marine species is an order of magnitude higher than official data. PLoS ONE 7, e31216, https://doi.org/10.1371/journal.pone.0031216 (2012).
doi: 10.1371/journal.pone.0031216 pubmed: 22363583 pmcid: 3281931
FAO. Fisheries and Aquaculture Department, FIGIS Global Capture Statistical Query. Food and Agriculture Organisation of the United Nations, http://fao.org/fishery/statistics/global-capture-production/ query/en (2019).
Brockmark, S. Risk assessment of American lobster (Homarus americanus). Swedish Agency for Marine and Water Management, Report 2016:4 (2016).
Statistics Canada. Canadian Domestic Exports of Lobster, 2011–2016. CATSNET Analytics, http://lobstercouncilcanada.ca/wp-content/uploads/2017/03/Lobster-Exports.pdf (2017).
NOAA. Lobster, 2015-2016: Cumulative US Trade Data by Product. National Marine Fisheries Service, https://www.st.nmfs.noaa.gov/commercial-fisheries/foreign-trade/applications/trade-by-product (2019).
Jørstad, K.E., Agnalt, A.-L. & Farestveit, E. The introduced American lobster, Homarus americanus in Scandinavian waters, in In the Wrong Place-Alien Marine Crustaceans: Distribution, Biology and Impacts (eds. Galil, B., Clark, P. & Carlton, J.), 625-638. (Springer, 2011).
Stebbing, P. et al. Reports of American lobsters, Homarus americanus (H. Milne Edwards, 1837), in British waters. BioInvasions Records 1, 17–23 (2012).
doi: 10.3391/bir.2012.1.1.04
Guardian Media Group. Two Buddhists fined £15,000 for releasing crustaceans into sea. The Guardian, Sept 23, 2017, https://theguardian.com/uk-news/2017/sep/23/two-buddhists-fined-15000-releasing-non-native-crustaceans-sea-brighton (2017)
Stebbing, P. Risk Assessment Summary Sheet: American Lobster. Great Britain Non-Native Species Secretariat, http://nonnativespecies.org/downloadDocument.cfm?id=1379 (2016a).
Davies, C. E. et al. A comparison of the structure of American (Homarus americanus) and European (Homarus gammarus) lobster cuticle with particular reference to shell disease susceptibility. J. Invertebr. Path. 117, 33–41 (2014).
doi: 10.1016/j.jip.2014.01.001
Whitten, M. M. et al. Cuticles of European and American lobsters harbour diverse bacterial species and differ in disease susceptibility. Microbiol. Open 3, 395–409 (2014).
doi: 10.1002/mbo3.174
Øresland, V., Ulmestrand, M., Agnalt, A.-L. & Oxby, G. Recorded captures of American lobster (Homarus americanus) in Swedish waters and an observation of predation on the European lobster (Homarus gammarus). Can. J. Fish. Aquat. Sci. 74, 1503–1506 (2017).
doi: 10.1139/cjfas-2016-0532
Talbot, P., Hedgecock, D., Borgeson, W., Wilson, P. & Thaler, C. Examination of spermatophore production by laboratory-maintained lobsters (Homarus). J. World Mariculture Soc. 14, 269–278 (1983).
doi: 10.1111/j.1749-7345.1983.tb00083.x
van der Meeren, G. I., Chandrapavan, A. & Breithaupt, T. Sexual and aggressive interactions in a mixed species group of lobsters Homarus gammarus and H. americanus. Aquat. Biol. 2, 191–200 (2008).
doi: 10.3354/ab00050
Jørstad, K. E. et al. Comparison of genetic and morphological methods to detect the presence of American lobsters, Homarus americanus (H. Milne Edwards, 1837; Astacidea: Nephropidae) in Norwegian waters. Hydrobiologia 590, 103–114 (2007).
doi: 10.1007/s10750-007-0762-y
Stebbing, P. Species Description and Identification Summary Sheet: American Lobster. Great Britain Non-Native Species Secretariat, http://nonnativespecies.org/downloadDocument.cfm?id=1177 (2016b).
Fish Society, UK. Shellfish products: ‘Cooked native lobster’, https://www.thefishsociety.co.uk (2019).
Waitrose, UK. Frozen Fish & Seafood: ‘Whole cooked Canadian lobster’, https://www.waitrose.com (2019).
Jacquet, J. L. & Pauly, D. Trade secrets: renaming and mislabelling of seafood. Mar. Policy 32, 309–318 (2008).
doi: 10.1016/j.marpol.2007.06.007
Jenkins, T. L., Ellis, C. D. & Stevens, J. R. SNP discovery in European lobster (Homarus gammarus) using RAD sequencing. Conserv. Genet. Res. 11, 253–257 (2018).
doi: 10.1007/s12686-018-1001-8
Jenkins, T. L., Ellis, C. D., Triantafyllidis, A. & Stevens, J. R. Single nucleotide polymorphisms reveal a genetic cline across the northeast Atlantic and enable powerful population assignment in the European lobster. Evol. Apps. 12, 1881–1889 (2019).
doi: 10.1111/eva.12849
Jombart, T. & Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).
doi: 10.1093/bioinformatics/btr521
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://R-project.org/ (2019).
Beugin, M. P., Gayet, T., Pontier, D., Devillard, S. & Jombart, T. A fast likelihood solution to the genetic clustering problem. Methods Ecol. Evol. 9, 1006–1016 (2018).
doi: 10.1111/2041-210X.12968
Chhatre, V. E. & Emerson, K. J. StrAuto: automation and parallelization of STRUCTURE analysis. BMC Bioinformatics 18, 192 (2017).
doi: 10.1186/s12859-017-1593-0
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
pubmed: 10835412 pmcid: 10835412
Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
doi: 10.1093/bioinformatics/btm233
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
doi: 10.1111/j.1365-294X.2005.02553.x
Francis, R. M. pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Res. 17, 27–32 (2017).
doi: 10.1111/1755-0998.12509
Huserbråten, M. B. O. et al. Conservation, Spillover and Gene Flow within a Network of Northern European Marine Protected Areas. PLoS ONE 8, e73388, https://doi.org/10.1371/journal.pone.0073388 (2013).
doi: 10.1371/journal.pone.0073388 pubmed: 24039927 pmcid: 3765458
Lobster Council of Canada. Canada-European Union Comprehensive Economic and Trade Agreement (CETA), http://lobstercouncilcanada.ca/market-access/canada-european-union-comprehensive-economic-and-trade-agreement-ceta (2019).
Martinsohn, J. T. et al. DNA-analysis to monitor fisheries and aquaculture: Too costly? Fish Fish. 20, 391–401 (2019).
doi: 10.1111/faf.12343
van der Meeren, G. I., Ekeli, K. O., Jørstad, K. E. & Tveite, S. Americans on the wrong side – the lobster Homarus americanus in Norwegian waters. ICES CM 2000 / U 20, 1–15 (2000).
Hughes, G. & Beaumont, A. R. A potential method for discriminating between tissue from the European lobster (Homarus gammarus) and the American lobster (H. americanus). Crustaceana 77, 371–376 (2004).
doi: 10.1163/1568540041181484

Auteurs

Charlie D Ellis (CD)

Hatherly Laboratories, Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4PS, UK.

Tom L Jenkins (TL)

Hatherly Laboratories, Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4PS, UK.

Linda Svanberg (L)

Kristineberg Marine Research Station, Department of Biological and Environmental Sciences, University of Gothenburg, Kristineberg 566, 45178, Fiskebäckskil, Sweden.

Susanne P Eriksson (SP)

Kristineberg Marine Research Station, Department of Biological and Environmental Sciences, University of Gothenburg, Kristineberg 566, 45178, Fiskebäckskil, Sweden.

Jamie R Stevens (JR)

Hatherly Laboratories, Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4PS, UK. meeg@exeter.ac.uk.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH