Enzymatic and genetic characterization of lignin depolymerization by Streptomyces sp. S6 isolated from a tropical environment.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
08 05 2020
Historique:
received: 03 09 2019
accepted: 23 04 2020
entrez: 10 5 2020
pubmed: 10 5 2020
medline: 1 12 2020
Statut: epublish

Résumé

The conversion of lignocellulosic biomass into bioethanol or biochemical products requires a crucial pretreatment process to breakdown the recalcitrant lignin structure. This research focuses on the isolation and characterization of a lignin-degrading bacterial strain from a decaying oil palm empty fruit bunch (OPEFB). The isolated strain, identified as Streptomyces sp. S6, grew in a minimal medium with Kraft lignin (KL) as the sole carbon source. Several known ligninolytic enzyme assays were performed, and lignin peroxidase (LiP), laccase (Lac), dye-decolorizing peroxidase (DyP) and aryl-alcohol oxidase (AAO) activities were detected. A 55.3% reduction in the molecular weight (Mw) of KL was observed after 7 days of incubation with Streptomyces sp. S6 based on gel-permeation chromatography (GPC). Gas chromatography-mass spectrometry (GC-MS) also successfully highlighted the production of lignin-derived aromatic compounds, such as 3-methyl-butanoic acid, guaiacol derivatives, and 4,6-dimethyl-dodecane, after treatment of KL with strain S6. Finally, draft genome analysis of Streptomyces sp. S6 also revealed the presence of strong lignin degradation machinery and identified various candidate genes responsible for lignin depolymerization, as well as for the mineralization of the lower molecular weight compounds, confirming the lignin degradation capability of the bacterial strain.

Identifiants

pubmed: 32385385
doi: 10.1038/s41598-020-64817-4
pii: 10.1038/s41598-020-64817-4
pmc: PMC7210275
doi:

Substances chimiques

lignocellulose 11132-73-3
Ethanol 3K9958V90M
Kraft lignin 8068-05-1
Lignin 9005-53-2
Alcohol Oxidoreductases EC 1.1.-
aryl-alcohol oxidase EC 1.1.3.7
Laccase EC 1.10.3.2
Peroxidases EC 1.11.1.-
lignin peroxidase EC 1.11.1.-
Peroxidase EC 1.11.1.7

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7813

Références

Isikgor, F. H. & Becer, C. R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497–4559 (2015).
doi: 10.1039/C5PY00263J
Tian, X., Fang, Z., Smith, R. L., Wu, Z. & Liu, M. Properties, Chemical Characteristics and Application of Lignin and Its Derivatives in Production of Biofuels and Chemicals from Lignin. Production of Biofuels and Chemicals from Lignin (eds. Fang, Z. & L. Smith, R.) 3–33 (Springer, 2016).
Hatti-kaul, R. & Ibrahim, V. Lignin-degrading enzymes: an overview in Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers (eds. Yang, S. T., El-Enshasy, H., Thongchul, N.) 167–192 (Wiley, 2013).
Olajuyigbe, F. M., Fatokun, C. O. & Oyelere, O. M. Biodelignification of some agro-residues by Stenotrophomonas sp. CFB-09 and enhanced production of ligninolytic enzymes. Biocatal. Agric. Biotechnol. 15, 120–130 (2018).
doi: 10.1016/j.bcab.2018.05.016
Bugg, T. D. H. & Rahmanpour, R. Enzymatic conversion of lignin into renewable chemicals. Curr. Opin. Chem. Biol. 29, 10–17 (2015).
pubmed: 26121945 doi: 10.1016/j.cbpa.2015.06.009 pmcid: 26121945
Vares, T., Kalsi, M. & Hatakka, A. Lignin Peroxidases, Manganese Peroxidases, and Other Ligninolytic Enzymes Produced by Phlebia radiata during Solid-State Fermentation of Wheat Straw. Appl. Environ. Microbiol. 61, 3515–3520 (1995).
pubmed: 16535139 pmcid: 1388701 doi: 10.1128/AEM.61.10.3515-3520.1995
Levasseur, A. et al. FOLy: An integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet. Biol. 45, 638–645 (2008).
pubmed: 18308593 doi: 10.1016/j.fgb.2008.01.004 pmcid: 18308593
Barrasa, J. M., Camarero, S., Martinez, A. T. & Ruel, K. Ultrastructural aspects of wheat straw degradation by Phanerochaete chrysosporium and Trametes versicolor. Appl. Microbiol. Biotechnol. 43, 766–770 (1995).
doi: 10.1007/BF00164786
Salvachúa, D., Prieto, A., Martínez, Á. T. & Martínez, M. J. Characterization of a novel dye-decolorizing peroxidase (DyP)-type enzyme from Irpex lacteus and its application in enzymatic hydrolysis of wheat straw. Appl. Environ. Microbiol. 79, 4316–4324 (2013).
pubmed: 23666335 pmcid: 3697495 doi: 10.1128/AEM.00699-13
Salame, T. M. et al. Inactivation of a Pleurotus ostreatus versatile peroxidase-encoding gene (mnp2) results in reduced lignin degradation. Environ. Microbiol. 16, 265–277 (2014).
pubmed: 24119015 doi: 10.1111/1462-2920.12279 pmcid: 24119015
Soden, D. M., O’callaghan, J. & Dobson, A. D. W. Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology 1526, 40–4003 (2018).
Ahmad, M. et al. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 50, 5096–5107 (2011).
pubmed: 21534568 doi: 10.1021/bi101892z pmcid: 21534568
Shi, Y. et al. Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess Biosyst. Eng. 36, 1957–1965 (2013).
pubmed: 23877715 pmcid: 3825317 doi: 10.1007/s00449-013-0972-9
Xu, Z., Qin, L., Cai, M., Hua, W. & Jin, M. Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains. Environ. Sci. Pollut. Res. 25, 14171–14181 (2018).
doi: 10.1007/s11356-018-1633-y
Singh, R. et al. Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium. ACS Chem. Biol. 8, 700–706 (2013).
pubmed: 23305326 pmcid: 3631457 doi: 10.1021/cb300608x
Yang, Y. S., Zhou, J. T., Lu, H., Yuan, Y. L. & Zhao, L. H. Isolation and characterization of Streptomyces spp. strains F-6 and F-7 capable of decomposing alkali lignin. Environ. Technol. 33, 2603–2609 (2012).
pubmed: 23437660 doi: 10.1080/09593330.2012.672473 pmcid: 23437660
Brown, M. E., Barros, T. & Chang, M. C. Y. Identification and Characterization of a Multifunctional Dye Peroxidase from a Lignin-Reactive Bacterium. ACS Chem. Biol. 7, 2074–2081 (2012).
pubmed: 23054399 doi: 10.1021/cb300383y pmcid: 23054399
Ghatge, S., Yang, Y., Song, W. Y., Kim, T. Y. & Hur, H. G. A novel laccase from thermoalkaliphilic bacterium Caldalkalibacillus thermarum strain TA2.A1 able to catalyze dimerization of a lignin model compound. Appl. Microbiol. Biotechnol. 102, 4075–4086 (2018).
pubmed: 29552695 doi: 10.1007/s00253-018-8898-4 pmcid: 29552695
Nishimura, M., Ooi, O. & Davies, J. Isolation and characterization of Streptomyces sp. NL15-2K capable of degrading lignin-related aromatic compounds. J. Biosci. Bioeng. 102, 124–127 (2006).
pubmed: 17027874 doi: 10.1263/jbb.102.124 pmcid: 17027874
Raj, A., Reddy, M. M. K., Chandra, R., Purohit, H. J. & Kapley, A. Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill. Biodegradation 18, 783–792 (2007).
pubmed: 17308883 doi: 10.1007/s10532-007-9107-9 pmcid: 17308883
Tuncer, M., Kuru, A., Isikli, M., Sahin, N. & Celenk, F. G. Optimization of extracellular endoxylanase, endoglucanase and peroxidase production by Streptomyces sp. F2621 isolated in Turkey. J. Appl. Microbiol. 97, 783–791 (2004).
pubmed: 15357728 doi: 10.1111/j.1365-2672.2004.02361.x pmcid: 15357728
Zhu, D. et al. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. Biotechnol. Biofuels 10, 44 (2017).
pubmed: 28239416 pmcid: 5320714 doi: 10.1186/s13068-017-0735-y
Ravi, K. et al. Bacterial conversion of depolymerized Kraft lignin. Biotechnol. Biofuels 12, 56 (2019).
pubmed: 30923564 pmcid: 6420747 doi: 10.1186/s13068-019-1397-8
Chen, Y. H. et al. Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. J. Appl. Microbiol. 112, 900–906 (2012).
pubmed: 22380656 doi: 10.1111/j.1365-2672.2012.05275.x pmcid: 22380656
Chai, L. Y. et al. Depolymerization and decolorization of kraft lignin by bacterium Comamonas sp. B-9. Appl. Microbiol. Biotechnol. 98, 1907–1912 (2014).
pubmed: 23948726 doi: 10.1007/s00253-013-5166-5 pmcid: 23948726
Varela, E., Guillén, F., Martínez, A. T. & Martínez, M. J. Expression of Pleurotus eryngii aryl-alcohol oxidase in Aspergillus nidulans: purification and characterization of the recombinant enzyme. Biochim. Biophys. Acta 1546, 107–13 (2001).
pubmed: 11257513 doi: 10.1016/S0167-4838(00)00301-0 pmcid: 11257513
Okamoto, K. & Yanase, H. Aryl alcohol oxidases from the white-rot basidiomycete Pleurotus ostreatus. Mycoscience 43, 391–395 (2002).
doi: 10.1007/S102670200057
Tamboli, D. P., Telke, A. A., Dawkar, V. V., Jadhav, S. B. & Govindwar, S. P. Purification and characterization of bacterial aryl alcohol oxidase from Sphingobacterium sp. ATM and its uses in textile dye decolorization. Biotechnol. Bioprocess Eng. 16, 661–668 (2011).
doi: 10.1007/s12257-011-0031-9
Azman, N. F. et al. Depolymerization of lignocellulose of oil palm empty fruit bunch by thermophilic microorganisms from tropical climate. Bioresour. Technol. 279, 174–180 (2019).
pubmed: 30721818 doi: 10.1016/j.biortech.2019.01.122 pmcid: 30721818
Mathews, S. L., Grunden, A. M. & Pawlak, J. Degradation of lignocellulose and lignin by Paenibacillus glucanolyticus. Int. Biodeterior. Biodegrad. 110, 79–86 (2016).
doi: 10.1016/j.ibiod.2016.02.012
Shi, Y. et al. Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment. Process Biochem. 52, 238–242 (2017).
doi: 10.1016/j.procbio.2016.10.004
Yang, C.-X., Wang, T., Gao, L.-N., Yin, H.-J. & Lü, X. Isolation, identification and characterization of lignin-degrading bacteria from Qinling, China. J. Appl. Microbiol. 123, 1447–1460 (2017).
pubmed: 28801977 doi: 10.1111/jam.13562 pmcid: 28801977
Chen, Y. et al. Application of Fenton pretreatment on the degradation of rice straw by mixed culture of Phanerochaete chrysosporium and Aspergillus niger. Ind. Crops Prod. 112, 290–295 (2018).
doi: 10.1016/j.indcrop.2017.12.005
Raj, A., Krishna Reddy, M. M. & Chandra, R. Identification of low molecular weight aromatic compounds by gas chromatography–mass spectrometry (GC–MS) from kraft lignin degradation by three Bacillus sp. Int. Biodeterior. Biodegradation 59, 292–296 (2007).
doi: 10.1016/j.ibiod.2006.09.006
Zhao, Y. Sustainable Aromatics: Synthesis and Hydrogenolysis of Lignin Monomer Compounds. PhD thesis, University of Leeds (2014).
Shin, K.-S. & Lee, Y.-J. Depolymerisation of lignosulfonate by peroxidase of the white-rot basidiomycete, Pleurotus ostreatus. Biotechnol. Lett. 21, 585–588 (1999).
doi: 10.1023/A:1005591027897
Ksibi, M. et al. Photodegradation of lignin from black liquor using a UV/TiO2 system. J. Photochem. Photobiol. A Chem. 154, 211–218 (2003).
doi: 10.1016/S1010-6030(02)00316-7
Majumdar, S. et al. Roles of small laccases from Streptomyces in lignin degradation. Biochemistry 53, 4047–4058 (2014).
pubmed: 24870309 doi: 10.1021/bi500285t pmcid: 24870309
Feng, H. et al. Lignocellulose degradation by the isolate of Streptomyces griseorubens JSD-1. Funct. Integr. Genomics 15, 163–173 (2015).
pubmed: 25452226 doi: 10.1007/s10142-014-0425-9
Camarero, S., Sarkar, S., Ruiz-Dueñas, F. J., Martínez, M. J. & Martínez, A. T. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J. Biol. Chem. 274, 10324–30 (1999).
pubmed: 10187820 doi: 10.1074/jbc.274.15.10324 pmcid: 10187820
Archibald, F. S. A new assay for lignin-type peroxidases employing the dye Azure B. Appl. Environ. Microbiol. 58, 3110–3116 (1992).
pubmed: 1444425 pmcid: 183056 doi: 10.1128/AEM.58.9.3110-3116.1992
Arora, D. S. & Sandhu, D. K. Laccase production and wood degradation by a white-rot fungus Daedalea flavida. Enzyme Microb. Technol. 7, 405–408 (1985).
doi: 10.1016/0141-0229(85)90131-0
Kim, S. J. & Shoda, M. Purification and characterization of a novel peroxidase from Geotrichum candidum dec 1 involved in decolorization of dyes. Appl. Environ. Microbiol. 65, 1029–35 (1999).
pubmed: 10049859 pmcid: 91140 doi: 10.1128/AEM.65.3.1029-1035.1999
Shi, Y. et al. Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol. Biofuels 6 (2013).
Davis, J. R. et al. Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete. Genome Announc. 1, 1–2 (2013).
de Gonzalo, G., Colpa, D. I., Habib, M. H. M. & Fraaije, M. W. Bacterial enzymes involved in lignin degradation. J. Biotechnol. 236, 110–119 (2016).
pubmed: 27544286 doi: 10.1016/j.jbiotec.2016.08.011 pmcid: 27544286
Bugg, T. D. H., Ahmad, M., Hardiman, E. M. & Singh, R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22, 394–400 (2011).
pubmed: 21071202 doi: 10.1016/j.copbio.2010.10.009 pmcid: 21071202
Brown, M. E. & Chang, M. C. Y. Exploring bacterial lignin degradation. Curr. Opin. Chem. Biol. 19, 1–7 (2014).
pubmed: 24780273 doi: 10.1016/j.cbpa.2013.11.015 pmcid: 24780273
Colpa, D. I., Fraaije, M. W. & van Bloois, E. DyP-type peroxidases: a promising and versatile class of enzymes. J. Ind. Microbiol. Biotechnol. 41, 1–7 (2014).
pubmed: 24212472 doi: 10.1007/s10295-013-1371-6 pmcid: 24212472
Rahmanpour, R. & Bugg, T. D. H. Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: Oxidation of Mn(II) and polymeric lignin by Dyp1B. Arch. Biochem. Biophys. 574, 93–98 (2015).
pubmed: 25558792 doi: 10.1016/j.abb.2014.12.022 pmcid: 25558792
Rhee, S. G. Overview on Peroxiredoxin. Mol. Cells 39, 1–5 (2016).
pubmed: 26831451 pmcid: 4749868 doi: 10.14348/molcells.2016.2368
Kameshwar, A. K. S. & Qin, W. Qualitative and Quantitative Methods for Isolation and Characterization of Lignin-Modifying Enzymes Secreted by Microorganisms. Bioenergy Res. 10, 248–266 (2017).
doi: 10.1007/s12155-016-9784-5
Axelsson, L. et al. Perspective: Jatropha cultivation in southern India: Assessing farmers’ experiences. Biofuels, Bioprod. Biorefining 6, 246–256 (2012).
doi: 10.1002/bbb.1324
Reiss, R. et al. Laccase versus Laccase-Like Multi-Copper Oxidase: A Comparative Study of Similar Enzymes with Diverse Substrate Spectra. PLoS One 8, e65633 (2013).
pubmed: 23755261 pmcid: 3670849 doi: 10.1371/journal.pone.0065633
Granja-Travez, R. S. et al. Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate. FEBS J. 1–17, https://doi.org/10.1111/febs.14437 (2018).
Abdelaziz, O. Y. et al. Biological valorization of low molecular weight lignin. Biotechnol. Adv. 34, 1318–1346 (2016).
pubmed: 27720980 doi: 10.1016/j.biotechadv.2016.10.001 pmcid: 27720980
Sato, Y. et al. Identification of three alcohol dehydrogenase genes involved in the stereospecific catabolism of arylglycerol-beta-aryl ether by Sphingobium sp. strain SYK-6. Appl. Environ. Microbiol. 75, 5195–201 (2009).
pubmed: 19542348 pmcid: 2725478 doi: 10.1128/AEM.00880-09
Ichinose, H. Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol. Appl. Biochem. 60, 71–81 (2013).
pubmed: 23586994 doi: 10.1002/bab.1061 pmcid: 23586994
Janusz, G. et al. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 049, 941–962 (2017).
doi: 10.1093/femsre/fux049
Bugg, T. D. H., Ahmad, M., Hardiman, E. M. & Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports 28, 1883–1896 (2011).
pubmed: 21918777 doi: 10.1039/c1np00042j pmcid: 21918777
Lee, S.-S., Moon, D.-S., Choi, H. T. & Song, H.-G. Purification and characterization of an intracellular NADH: quinone reductase from Trametes versicolor. J. Microbiol. 45, 333–8 (2007).
pubmed: 17846587 pmcid: 17846587
Kumar, M., Mishra, A., Singh, S. S., Srivastava, S. & Thakur, I. S. Expression and characterization of novel laccase gene from Pandoraea sp. ISTKB and its application. Int. J. Biol. Macromol. 115, 308–316 (2018).
pubmed: 29665388 doi: 10.1016/j.ijbiomac.2018.04.079 pmcid: 29665388
Wischgoll, S. et al. Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol. Microbiol. 58, 1238–1252 (2005).
pubmed: 16313613 doi: 10.1111/j.1365-2958.2005.04909.x pmcid: 16313613
Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds- From one strategy to four. Nature Reviews Microbiology 9, 803–816 (2011).
pubmed: 21963803 doi: 10.1038/nrmicro2652 pmcid: 21963803
Kumar, M. et al. Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium Pandoraea sp. ISTKB. Biotechnol. Biofuels 11, 154 (2018).
pubmed: 29991962 pmcid: 5987411 doi: 10.1186/s13068-018-1148-2
Tahir, A. A. et al. Microbial diversity in decaying oil palm empty fruit bunches (OPEFB) and isolation of lignin-degrading bacteria from a tropical environment. Microbes Environ. 34, 161–168 (2019).
pubmed: 31019143 pmcid: 6594733 doi: 10.1264/jsme2.ME18117
Guillen, F., Martinez, A. T. & Jesus Martinez, M. Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem. 209, 603–611 (1992).
pubmed: 1425667 doi: 10.1111/j.1432-1033.1992.tb17326.x pmcid: 1425667
Asikkala, J., Tamminen, T. & Argyropoulos, D. S. Accurate and Reproducible Determination of Lignin Molar Mass by Acetobromination. J. Agric. Food Chem. 60, 8968–8973 (2012).
pubmed: 22870925 doi: 10.1021/jf303003d pmcid: 22870925
Kumar, S., Stecher, G., Tamura, K. & Dudley, J. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets Downloaded from. Mol. Biol. Evol. 33, 1870–1874 (2016).
pubmed: 27004904 pmcid: 27004904 doi: 10.1093/molbev/msw054

Auteurs

Fatimah Azizah Riyadi (FA)

Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.

Analhuda Abdullah Tahir (AA)

Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.

Nurtasbiyah Yusof (N)

Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.

Nurul Syazwani Ahmad Sabri (NSA)

Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.

Megat Johari Megat Mohd Noor (MJMM)

Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.

Fazrena Nadia M D Akhir (FNMD)

Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.

Nor'azizi Othman (N)

Department of Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.

Zuriati Zakaria (Z)

Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.

Hirofumi Hara (H)

Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia. hhara@utm.my.

Articles similaires

Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Humans DNA Methylation Female Male Alcohol Oxidoreductases
Biomass Lignin Wood Populus Microscopy, Electron, Scanning

Classifications MeSH