Enzymatic and genetic characterization of lignin depolymerization by Streptomyces sp. S6 isolated from a tropical environment.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
08 05 2020
08 05 2020
Historique:
received:
03
09
2019
accepted:
23
04
2020
entrez:
10
5
2020
pubmed:
10
5
2020
medline:
1
12
2020
Statut:
epublish
Résumé
The conversion of lignocellulosic biomass into bioethanol or biochemical products requires a crucial pretreatment process to breakdown the recalcitrant lignin structure. This research focuses on the isolation and characterization of a lignin-degrading bacterial strain from a decaying oil palm empty fruit bunch (OPEFB). The isolated strain, identified as Streptomyces sp. S6, grew in a minimal medium with Kraft lignin (KL) as the sole carbon source. Several known ligninolytic enzyme assays were performed, and lignin peroxidase (LiP), laccase (Lac), dye-decolorizing peroxidase (DyP) and aryl-alcohol oxidase (AAO) activities were detected. A 55.3% reduction in the molecular weight (Mw) of KL was observed after 7 days of incubation with Streptomyces sp. S6 based on gel-permeation chromatography (GPC). Gas chromatography-mass spectrometry (GC-MS) also successfully highlighted the production of lignin-derived aromatic compounds, such as 3-methyl-butanoic acid, guaiacol derivatives, and 4,6-dimethyl-dodecane, after treatment of KL with strain S6. Finally, draft genome analysis of Streptomyces sp. S6 also revealed the presence of strong lignin degradation machinery and identified various candidate genes responsible for lignin depolymerization, as well as for the mineralization of the lower molecular weight compounds, confirming the lignin degradation capability of the bacterial strain.
Identifiants
pubmed: 32385385
doi: 10.1038/s41598-020-64817-4
pii: 10.1038/s41598-020-64817-4
pmc: PMC7210275
doi:
Substances chimiques
lignocellulose
11132-73-3
Ethanol
3K9958V90M
Kraft lignin
8068-05-1
Lignin
9005-53-2
Alcohol Oxidoreductases
EC 1.1.-
aryl-alcohol oxidase
EC 1.1.3.7
Laccase
EC 1.10.3.2
Peroxidases
EC 1.11.1.-
lignin peroxidase
EC 1.11.1.-
Peroxidase
EC 1.11.1.7
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7813Références
Isikgor, F. H. & Becer, C. R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497–4559 (2015).
doi: 10.1039/C5PY00263J
Tian, X., Fang, Z., Smith, R. L., Wu, Z. & Liu, M. Properties, Chemical Characteristics and Application of Lignin and Its Derivatives in Production of Biofuels and Chemicals from Lignin. Production of Biofuels and Chemicals from Lignin (eds. Fang, Z. & L. Smith, R.) 3–33 (Springer, 2016).
Hatti-kaul, R. & Ibrahim, V. Lignin-degrading enzymes: an overview in Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers (eds. Yang, S. T., El-Enshasy, H., Thongchul, N.) 167–192 (Wiley, 2013).
Olajuyigbe, F. M., Fatokun, C. O. & Oyelere, O. M. Biodelignification of some agro-residues by Stenotrophomonas sp. CFB-09 and enhanced production of ligninolytic enzymes. Biocatal. Agric. Biotechnol. 15, 120–130 (2018).
doi: 10.1016/j.bcab.2018.05.016
Bugg, T. D. H. & Rahmanpour, R. Enzymatic conversion of lignin into renewable chemicals. Curr. Opin. Chem. Biol. 29, 10–17 (2015).
pubmed: 26121945
doi: 10.1016/j.cbpa.2015.06.009
pmcid: 26121945
Vares, T., Kalsi, M. & Hatakka, A. Lignin Peroxidases, Manganese Peroxidases, and Other Ligninolytic Enzymes Produced by Phlebia radiata during Solid-State Fermentation of Wheat Straw. Appl. Environ. Microbiol. 61, 3515–3520 (1995).
pubmed: 16535139
pmcid: 1388701
doi: 10.1128/AEM.61.10.3515-3520.1995
Levasseur, A. et al. FOLy: An integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet. Biol. 45, 638–645 (2008).
pubmed: 18308593
doi: 10.1016/j.fgb.2008.01.004
pmcid: 18308593
Barrasa, J. M., Camarero, S., Martinez, A. T. & Ruel, K. Ultrastructural aspects of wheat straw degradation by Phanerochaete chrysosporium and Trametes versicolor. Appl. Microbiol. Biotechnol. 43, 766–770 (1995).
doi: 10.1007/BF00164786
Salvachúa, D., Prieto, A., Martínez, Á. T. & Martínez, M. J. Characterization of a novel dye-decolorizing peroxidase (DyP)-type enzyme from Irpex lacteus and its application in enzymatic hydrolysis of wheat straw. Appl. Environ. Microbiol. 79, 4316–4324 (2013).
pubmed: 23666335
pmcid: 3697495
doi: 10.1128/AEM.00699-13
Salame, T. M. et al. Inactivation of a Pleurotus ostreatus versatile peroxidase-encoding gene (mnp2) results in reduced lignin degradation. Environ. Microbiol. 16, 265–277 (2014).
pubmed: 24119015
doi: 10.1111/1462-2920.12279
pmcid: 24119015
Soden, D. M., O’callaghan, J. & Dobson, A. D. W. Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology 1526, 40–4003 (2018).
Ahmad, M. et al. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 50, 5096–5107 (2011).
pubmed: 21534568
doi: 10.1021/bi101892z
pmcid: 21534568
Shi, Y. et al. Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess Biosyst. Eng. 36, 1957–1965 (2013).
pubmed: 23877715
pmcid: 3825317
doi: 10.1007/s00449-013-0972-9
Xu, Z., Qin, L., Cai, M., Hua, W. & Jin, M. Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains. Environ. Sci. Pollut. Res. 25, 14171–14181 (2018).
doi: 10.1007/s11356-018-1633-y
Singh, R. et al. Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium. ACS Chem. Biol. 8, 700–706 (2013).
pubmed: 23305326
pmcid: 3631457
doi: 10.1021/cb300608x
Yang, Y. S., Zhou, J. T., Lu, H., Yuan, Y. L. & Zhao, L. H. Isolation and characterization of Streptomyces spp. strains F-6 and F-7 capable of decomposing alkali lignin. Environ. Technol. 33, 2603–2609 (2012).
pubmed: 23437660
doi: 10.1080/09593330.2012.672473
pmcid: 23437660
Brown, M. E., Barros, T. & Chang, M. C. Y. Identification and Characterization of a Multifunctional Dye Peroxidase from a Lignin-Reactive Bacterium. ACS Chem. Biol. 7, 2074–2081 (2012).
pubmed: 23054399
doi: 10.1021/cb300383y
pmcid: 23054399
Ghatge, S., Yang, Y., Song, W. Y., Kim, T. Y. & Hur, H. G. A novel laccase from thermoalkaliphilic bacterium Caldalkalibacillus thermarum strain TA2.A1 able to catalyze dimerization of a lignin model compound. Appl. Microbiol. Biotechnol. 102, 4075–4086 (2018).
pubmed: 29552695
doi: 10.1007/s00253-018-8898-4
pmcid: 29552695
Nishimura, M., Ooi, O. & Davies, J. Isolation and characterization of Streptomyces sp. NL15-2K capable of degrading lignin-related aromatic compounds. J. Biosci. Bioeng. 102, 124–127 (2006).
pubmed: 17027874
doi: 10.1263/jbb.102.124
pmcid: 17027874
Raj, A., Reddy, M. M. K., Chandra, R., Purohit, H. J. & Kapley, A. Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill. Biodegradation 18, 783–792 (2007).
pubmed: 17308883
doi: 10.1007/s10532-007-9107-9
pmcid: 17308883
Tuncer, M., Kuru, A., Isikli, M., Sahin, N. & Celenk, F. G. Optimization of extracellular endoxylanase, endoglucanase and peroxidase production by Streptomyces sp. F2621 isolated in Turkey. J. Appl. Microbiol. 97, 783–791 (2004).
pubmed: 15357728
doi: 10.1111/j.1365-2672.2004.02361.x
pmcid: 15357728
Zhu, D. et al. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. Biotechnol. Biofuels 10, 44 (2017).
pubmed: 28239416
pmcid: 5320714
doi: 10.1186/s13068-017-0735-y
Ravi, K. et al. Bacterial conversion of depolymerized Kraft lignin. Biotechnol. Biofuels 12, 56 (2019).
pubmed: 30923564
pmcid: 6420747
doi: 10.1186/s13068-019-1397-8
Chen, Y. H. et al. Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. J. Appl. Microbiol. 112, 900–906 (2012).
pubmed: 22380656
doi: 10.1111/j.1365-2672.2012.05275.x
pmcid: 22380656
Chai, L. Y. et al. Depolymerization and decolorization of kraft lignin by bacterium Comamonas sp. B-9. Appl. Microbiol. Biotechnol. 98, 1907–1912 (2014).
pubmed: 23948726
doi: 10.1007/s00253-013-5166-5
pmcid: 23948726
Varela, E., Guillén, F., Martínez, A. T. & Martínez, M. J. Expression of Pleurotus eryngii aryl-alcohol oxidase in Aspergillus nidulans: purification and characterization of the recombinant enzyme. Biochim. Biophys. Acta 1546, 107–13 (2001).
pubmed: 11257513
doi: 10.1016/S0167-4838(00)00301-0
pmcid: 11257513
Okamoto, K. & Yanase, H. Aryl alcohol oxidases from the white-rot basidiomycete Pleurotus ostreatus. Mycoscience 43, 391–395 (2002).
doi: 10.1007/S102670200057
Tamboli, D. P., Telke, A. A., Dawkar, V. V., Jadhav, S. B. & Govindwar, S. P. Purification and characterization of bacterial aryl alcohol oxidase from Sphingobacterium sp. ATM and its uses in textile dye decolorization. Biotechnol. Bioprocess Eng. 16, 661–668 (2011).
doi: 10.1007/s12257-011-0031-9
Azman, N. F. et al. Depolymerization of lignocellulose of oil palm empty fruit bunch by thermophilic microorganisms from tropical climate. Bioresour. Technol. 279, 174–180 (2019).
pubmed: 30721818
doi: 10.1016/j.biortech.2019.01.122
pmcid: 30721818
Mathews, S. L., Grunden, A. M. & Pawlak, J. Degradation of lignocellulose and lignin by Paenibacillus glucanolyticus. Int. Biodeterior. Biodegrad. 110, 79–86 (2016).
doi: 10.1016/j.ibiod.2016.02.012
Shi, Y. et al. Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment. Process Biochem. 52, 238–242 (2017).
doi: 10.1016/j.procbio.2016.10.004
Yang, C.-X., Wang, T., Gao, L.-N., Yin, H.-J. & Lü, X. Isolation, identification and characterization of lignin-degrading bacteria from Qinling, China. J. Appl. Microbiol. 123, 1447–1460 (2017).
pubmed: 28801977
doi: 10.1111/jam.13562
pmcid: 28801977
Chen, Y. et al. Application of Fenton pretreatment on the degradation of rice straw by mixed culture of Phanerochaete chrysosporium and Aspergillus niger. Ind. Crops Prod. 112, 290–295 (2018).
doi: 10.1016/j.indcrop.2017.12.005
Raj, A., Krishna Reddy, M. M. & Chandra, R. Identification of low molecular weight aromatic compounds by gas chromatography–mass spectrometry (GC–MS) from kraft lignin degradation by three Bacillus sp. Int. Biodeterior. Biodegradation 59, 292–296 (2007).
doi: 10.1016/j.ibiod.2006.09.006
Zhao, Y. Sustainable Aromatics: Synthesis and Hydrogenolysis of Lignin Monomer Compounds. PhD thesis, University of Leeds (2014).
Shin, K.-S. & Lee, Y.-J. Depolymerisation of lignosulfonate by peroxidase of the white-rot basidiomycete, Pleurotus ostreatus. Biotechnol. Lett. 21, 585–588 (1999).
doi: 10.1023/A:1005591027897
Ksibi, M. et al. Photodegradation of lignin from black liquor using a UV/TiO2 system. J. Photochem. Photobiol. A Chem. 154, 211–218 (2003).
doi: 10.1016/S1010-6030(02)00316-7
Majumdar, S. et al. Roles of small laccases from Streptomyces in lignin degradation. Biochemistry 53, 4047–4058 (2014).
pubmed: 24870309
doi: 10.1021/bi500285t
pmcid: 24870309
Feng, H. et al. Lignocellulose degradation by the isolate of Streptomyces griseorubens JSD-1. Funct. Integr. Genomics 15, 163–173 (2015).
pubmed: 25452226
doi: 10.1007/s10142-014-0425-9
Camarero, S., Sarkar, S., Ruiz-Dueñas, F. J., Martínez, M. J. & Martínez, A. T. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J. Biol. Chem. 274, 10324–30 (1999).
pubmed: 10187820
doi: 10.1074/jbc.274.15.10324
pmcid: 10187820
Archibald, F. S. A new assay for lignin-type peroxidases employing the dye Azure B. Appl. Environ. Microbiol. 58, 3110–3116 (1992).
pubmed: 1444425
pmcid: 183056
doi: 10.1128/AEM.58.9.3110-3116.1992
Arora, D. S. & Sandhu, D. K. Laccase production and wood degradation by a white-rot fungus Daedalea flavida. Enzyme Microb. Technol. 7, 405–408 (1985).
doi: 10.1016/0141-0229(85)90131-0
Kim, S. J. & Shoda, M. Purification and characterization of a novel peroxidase from Geotrichum candidum dec 1 involved in decolorization of dyes. Appl. Environ. Microbiol. 65, 1029–35 (1999).
pubmed: 10049859
pmcid: 91140
doi: 10.1128/AEM.65.3.1029-1035.1999
Shi, Y. et al. Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol. Biofuels 6 (2013).
Davis, J. R. et al. Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete. Genome Announc. 1, 1–2 (2013).
de Gonzalo, G., Colpa, D. I., Habib, M. H. M. & Fraaije, M. W. Bacterial enzymes involved in lignin degradation. J. Biotechnol. 236, 110–119 (2016).
pubmed: 27544286
doi: 10.1016/j.jbiotec.2016.08.011
pmcid: 27544286
Bugg, T. D. H., Ahmad, M., Hardiman, E. M. & Singh, R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22, 394–400 (2011).
pubmed: 21071202
doi: 10.1016/j.copbio.2010.10.009
pmcid: 21071202
Brown, M. E. & Chang, M. C. Y. Exploring bacterial lignin degradation. Curr. Opin. Chem. Biol. 19, 1–7 (2014).
pubmed: 24780273
doi: 10.1016/j.cbpa.2013.11.015
pmcid: 24780273
Colpa, D. I., Fraaije, M. W. & van Bloois, E. DyP-type peroxidases: a promising and versatile class of enzymes. J. Ind. Microbiol. Biotechnol. 41, 1–7 (2014).
pubmed: 24212472
doi: 10.1007/s10295-013-1371-6
pmcid: 24212472
Rahmanpour, R. & Bugg, T. D. H. Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: Oxidation of Mn(II) and polymeric lignin by Dyp1B. Arch. Biochem. Biophys. 574, 93–98 (2015).
pubmed: 25558792
doi: 10.1016/j.abb.2014.12.022
pmcid: 25558792
Rhee, S. G. Overview on Peroxiredoxin. Mol. Cells 39, 1–5 (2016).
pubmed: 26831451
pmcid: 4749868
doi: 10.14348/molcells.2016.2368
Kameshwar, A. K. S. & Qin, W. Qualitative and Quantitative Methods for Isolation and Characterization of Lignin-Modifying Enzymes Secreted by Microorganisms. Bioenergy Res. 10, 248–266 (2017).
doi: 10.1007/s12155-016-9784-5
Axelsson, L. et al. Perspective: Jatropha cultivation in southern India: Assessing farmers’ experiences. Biofuels, Bioprod. Biorefining 6, 246–256 (2012).
doi: 10.1002/bbb.1324
Reiss, R. et al. Laccase versus Laccase-Like Multi-Copper Oxidase: A Comparative Study of Similar Enzymes with Diverse Substrate Spectra. PLoS One 8, e65633 (2013).
pubmed: 23755261
pmcid: 3670849
doi: 10.1371/journal.pone.0065633
Granja-Travez, R. S. et al. Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate. FEBS J. 1–17, https://doi.org/10.1111/febs.14437 (2018).
Abdelaziz, O. Y. et al. Biological valorization of low molecular weight lignin. Biotechnol. Adv. 34, 1318–1346 (2016).
pubmed: 27720980
doi: 10.1016/j.biotechadv.2016.10.001
pmcid: 27720980
Sato, Y. et al. Identification of three alcohol dehydrogenase genes involved in the stereospecific catabolism of arylglycerol-beta-aryl ether by Sphingobium sp. strain SYK-6. Appl. Environ. Microbiol. 75, 5195–201 (2009).
pubmed: 19542348
pmcid: 2725478
doi: 10.1128/AEM.00880-09
Ichinose, H. Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol. Appl. Biochem. 60, 71–81 (2013).
pubmed: 23586994
doi: 10.1002/bab.1061
pmcid: 23586994
Janusz, G. et al. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 049, 941–962 (2017).
doi: 10.1093/femsre/fux049
Bugg, T. D. H., Ahmad, M., Hardiman, E. M. & Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports 28, 1883–1896 (2011).
pubmed: 21918777
doi: 10.1039/c1np00042j
pmcid: 21918777
Lee, S.-S., Moon, D.-S., Choi, H. T. & Song, H.-G. Purification and characterization of an intracellular NADH: quinone reductase from Trametes versicolor. J. Microbiol. 45, 333–8 (2007).
pubmed: 17846587
pmcid: 17846587
Kumar, M., Mishra, A., Singh, S. S., Srivastava, S. & Thakur, I. S. Expression and characterization of novel laccase gene from Pandoraea sp. ISTKB and its application. Int. J. Biol. Macromol. 115, 308–316 (2018).
pubmed: 29665388
doi: 10.1016/j.ijbiomac.2018.04.079
pmcid: 29665388
Wischgoll, S. et al. Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol. Microbiol. 58, 1238–1252 (2005).
pubmed: 16313613
doi: 10.1111/j.1365-2958.2005.04909.x
pmcid: 16313613
Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds- From one strategy to four. Nature Reviews Microbiology 9, 803–816 (2011).
pubmed: 21963803
doi: 10.1038/nrmicro2652
pmcid: 21963803
Kumar, M. et al. Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium Pandoraea sp. ISTKB. Biotechnol. Biofuels 11, 154 (2018).
pubmed: 29991962
pmcid: 5987411
doi: 10.1186/s13068-018-1148-2
Tahir, A. A. et al. Microbial diversity in decaying oil palm empty fruit bunches (OPEFB) and isolation of lignin-degrading bacteria from a tropical environment. Microbes Environ. 34, 161–168 (2019).
pubmed: 31019143
pmcid: 6594733
doi: 10.1264/jsme2.ME18117
Guillen, F., Martinez, A. T. & Jesus Martinez, M. Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem. 209, 603–611 (1992).
pubmed: 1425667
doi: 10.1111/j.1432-1033.1992.tb17326.x
pmcid: 1425667
Asikkala, J., Tamminen, T. & Argyropoulos, D. S. Accurate and Reproducible Determination of Lignin Molar Mass by Acetobromination. J. Agric. Food Chem. 60, 8968–8973 (2012).
pubmed: 22870925
doi: 10.1021/jf303003d
pmcid: 22870925
Kumar, S., Stecher, G., Tamura, K. & Dudley, J. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets Downloaded from. Mol. Biol. Evol. 33, 1870–1874 (2016).
pubmed: 27004904
pmcid: 27004904
doi: 10.1093/molbev/msw054