Infectious pancreatic necrosis virus inhibits infectious hematopoietic necrosis virus at the early stage of infection in a time dependent manner during Co-infection in Chinook salmon embryo cell lines.


Journal

Fish & shellfish immunology
ISSN: 1095-9947
Titre abrégé: Fish Shellfish Immunol
Pays: England
ID NLM: 9505220

Informations de publication

Date de publication:
Jul 2020
Historique:
received: 24 10 2019
revised: 10 04 2020
accepted: 04 05 2020
pubmed: 11 5 2020
medline: 16 1 2021
entrez: 11 5 2020
Statut: ppublish

Résumé

Salmonids can be co-infected by infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) under natural or experimental conditions. To reveal the influence of IPNV on IHNV in co-infections, CHSE-214 cells were inoculated with IPNV at different time intervals prior to or after IHNV infection. Propagation of IHNV was determined by an immunofluorescence antibody test, real-time quantitative polymerase chain reaction, flow cytometry, and virus titration. The results showed that when cells were inoculated with IPNV prior to IHNV, IHNV multiplication was inhibited. This inhibitory effect became stronger with increasing time intervals (P < 0.05). When cells were inoculated with IPNV after IHNV, the inhibitory effect became weaker with increasing time intervals (P < 0.05), and no significant inhibition was observed at 12 h (P > 0.05) compared with the single IHNV infection group. The findings suggest that IHNV is inhibited at the early stage of infection by IPNV and in a time dependent manner during co-infection. Furthermore, the effect of IPNV on IHNV entry and expression of IHNV entry-related genes clathrin, dynamin-2, adaptor protein 2, and vacuolar protein sorting 35 were also determined. The results showed that IPNV did not affect the amount of IHNV entering the cells. However, the expression levels of clathrin and dynamin-2 were significantly lower in co-infection than those in single IHNV infection, which suggests that IPNV likely inhibits IHNV by affecting IHNV invasion via downregulating IHNV entry-related genes clathrin and dynamin-2.

Identifiants

pubmed: 32387559
pii: S1050-4648(20)30336-3
doi: 10.1016/j.fsi.2020.05.010
pii:
doi:

Substances chimiques

Fish Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

361-367

Informations de copyright

Copyright © 2020 Elsevier Ltd. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of competing interest All authors declare that no conflicts of interest exist.

Auteurs

Li-Ming Xu (LM)

Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Guangzhou, 510380, China.

Miao Liu (M)

Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China.

Jing-Zhuang Zhao (JZ)

Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China.

Guang-Ming Ren (GM)

Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China.

Ying Dong (Y)

Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China.

Yi-Zhi Shao (YZ)

Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China.

Tong-Yan Lu (TY)

Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China. Electronic address: lutongyan@hrfri.ac.cn.

Qi-Ya Zhang (QY)

State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. Electronic address: zhangqy@ihb.ac.cn.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH