Strategies in developing high-throughput liquid chromatography protocols for method qualification of pharmacopeial monographs.

high-throughput analysis method development pharmaceuticals superficially porous particles ultrahigh pressure liquid chromatography

Journal

Journal of separation science
ISSN: 1615-9314
Titre abrégé: J Sep Sci
Pays: Germany
ID NLM: 101088554

Informations de publication

Date de publication:
Aug 2020
Historique:
received: 08 04 2020
revised: 05 05 2020
accepted: 06 05 2020
pubmed: 11 5 2020
medline: 24 6 2021
entrez: 11 5 2020
Statut: ppublish

Résumé

Method qualification is a key step in the development of routine analytical monitoring of pharmaceutical products. However, when relying on published monographs that describe longer method times based on older high-performance liquid chromatography column and instrument technology, this can delay the overall analysis process for generated drug products. In this study, high-throughput ultrahigh pressure liquid chromatography techniques were implemented to decrease the amount of time needed to complete a 24-run sequence to identify linearity, recovery, and repeatability for both drug assay and impurity analysis in 16 min. Multiple experimental parameters were tested to identify a range of experimental settings that could be used for the sequence while still maintaining this fast analysis time. The full sequence was replicated on a different system and with different columns, further demonstrating its robustness.

Identifiants

pubmed: 32388922
doi: 10.1002/jssc.202000403
doi:

Substances chimiques

Pharmaceutical Preparations 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2964-2970

Subventions

Organisme : United States Department of Defense
Organisme : Science, Mathematics, and Research for Transformation (SMART)

Informations de copyright

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

Chan, C. C., Lam, H., Zhang, X. M. (Eds.), Practical Approaches to Method Validation and Essential Instrument Qualification. Hoboken, NJ: John Wiley & Sons; 2012, pp. 11-26.
Rozet, E., Hubert, C., Ceccato, A., Dewé, W., Ziemons, E., Moonen, F., Michail, K., Wintersteiger, R., Streel, B., Boulanger, B., Hubert, P., Using tolerance intervals in pre-study validation of analytical methods to predict in-study results. The fit-for-future-purpose concept. J. Chromatogr. A 2007, 1158, 126-137.
Bouabidi, A., Rozet, E., Fillet, M., Ziemons, E., Chapuzet, E., Mertens, B., Klinkenberg, R., Ceccato, A., Talbi, M., Streel, B., Bouklouze, A., Boulanger, B., Hubert, P., Critical analysis of several analytical method validation strategies in the framework of the fit for purpose concept. J. Chromatogr. A 2010, 1217, 3180-3192.
Rudaz, S., Feinberg, M., From method validation to result assessment: Established facts and pending questions. Trends Anal. Chem. 2018, 105, 68-74.
International Conference on Harmonization Expert Working Group, Validation of Analytical Procedures: Text and Methodology; 2005. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q2-r1-validation-analytical-procedures-text-and-methodology (last time accessed: April 30, 2020).
United States Pharmacopeial Convention, First Supplement to United States Pharmacopeia and National Formulary (USP 40-NF 35). Rockville, MD: United States Pharmacopeial Convention; 2017, pp. 1-6.
Food & Drug Administration, Analytical Procedures and Methods Validation for Drugs and Biologics: Guidance for Industry; 2015. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/analytical-procedures-and-methods-validation-drugs-and-biologics (last time accessed: April 30, 2020).
Santos, L. M., Davani, B., Anthony, C. M., Clark, J. E., USP monograph modernization initiative. Am. Pharm. Rev. 2015, 18.
Russo, K., Dressman, S., Monograph makeover requires industry input. Pharm. Technol. 2011, 35, 90-94.
Alsante, K. M., Huynh-Ba, K. C., Baertschi, S. W., Reed, R. A., Landis, M. S., Furness, S., Olsen, B., Mowery, M., Russo, K., Iser, R., Stephenson, G. A., Jansen, P., Recent trends in product development and regulatory issues on impurities in active pharmaceutical ingredient (API) and drug products. Part 2: Safety considerations of impurities in pharmaceutical products and surveying the impurity landscape. AAPS PharmSciTech. 2014, 15, 237-51.
United States Pharmacopeial Convention, Chromatography. United States Pharmacopeia and the National Formulary (USP 40-NF 35). Rockville, MD: United States Pharmacopeial Convention; 2017, pp. 8071-8082.
Dolan, J. W., Method adjustment the USP way. LC-GC North Am. 2017, 35, 368-373.
Guillarme, D., Ruta, J., Rudaz, S., Veuthey, J. L., New trends in fast and high-resolution liquid chromatography: A critical comparison of existing approaches. Anal. Bioanal. Chem. 2010, 397, 1069-1082.
Dong, M. W., Zhang, K., Ultra-high-pressure liquid chromatography (UHPLC) in method development. Trends Anal. Chem. 2014, 63, 21-30.
Lin, B., Pease, J. H., Dong, M. W., Separation science in drug development, part II: High-throughput characterization. LC-GC North Am. 2015, 33, 534-545.
Wu, N., Clausen, A. M., Fundamental and practical aspects of ultrahigh pressure liquid chromatography for fast separations. J. Sep. Sci. 2007, 30, 1167-1182.
Nguyen, D. T. T., Guillarme, D., Rudaz, S., Veuthey, J. L., Validation of an ultra-fast UPLC-UV method for the separation of antituberculosis tablets. J. Sep. Sci. 2008, 31, 1050-1056.
Krier, F., Brion, M., Debrus, B., Lebrun, P., Driesen, A., Ziemons, E., Evrard, B., Hubert, P., Optimisation and validation of a fast HPLC method for the quantification of sulindac and its related impurities. J. Pharm. Biomed. Anal. 2011, 54, 694-700.
Al-Sayah, M. A., Rizos, P., Antonucci, V., Wu, N., High throughput screening of active pharmaceutical ingredients by UPLC. J. Sep. Sci. 2008, 31, 2167-2172.
Zawatzky, K., Barhate, C. L., Regalado, E. L., Mann, B. F., Marshall, N., Moore, J. C., Welch, C. J., Overcoming “speed limits” in high throughput chromatographic analysis. J. Chromatogr. A 2017, 1499, 211-216.
Gilar, M., McDonald, T. S., Gritti, F., Impact of instrument and column parameters on high-throughput liquid chromatography performance. J. Chromatogr. A 2017, 1523, 215-223.
Patel, D. C., Breitbach, Z. S., Wahab, M. F., Barhate, C. L., Armstrong, D. W., Gone in seconds: Praxis, performance, and peculiarities of ultrafast chiral liquid chromatography with superficially porous particles. Anal. Chem. 2015, 87, 9137-9148.
Wahab, M. F., Wimalasinghe, R. M., Wang, Y., Barhate, C. L., Patel, D. C., Armstrong, D. W., Salient sub-second separations. Anal. Chem. 2016, 88, 8821-8826.
Patel, D. C., Wahab, M. F., O'Haver, T. C., Armstrong, D. W., Separations at the speed of sensors. Anal. Chem. 2018, 90, 3349-3356.
Ciogli, A., Ismail, O. H., Mazzoccanti, G., Villani, C., Gasparrini, F., Enantioselective ultra high performance liquid and supercritical fluid chromatography: The race to the shortest chromatogram. J. Sep. Sci. 2018, 41, 1307-1318.
Kaplitz, A. S., Kresge, G. A., Selover, B., Horvat, L., Franklin, E. G., Godinho, J. M., Grinias, K. M., Foster, S. W., Davis, J. J., Grinias, J. P., High-throughput and ultrafast liquid chromatography. Anal. Chem. 2020, 92, 67-84.
Kresge, G. A., Wong, J.-M. T., De Pra, M., Steiner, F., Grinias, J. P., Using superficially porous particles and ultrahigh pressure liquid chromatography in pharmacopeial monograph modernization of common analgesics. Chromatographia 2019, 82, 465-475.
United States Pharmacopeial Convention, Ibuprofen. United States Pharmacopeia and the National Formulary (USP 40-NF 35); 2017, pp. 4555-4556.
Phenomenex, Advanced USP Methods. Phenomenex: Torrance, CA; 2003.
Moini, S., Simpson, J., Belsky, J., Method Development and Validation Consideration for Modernization of USP Monographs. HPLC 2018: Washington, DC.
De Vos, J., Broeckhoven, K., Eeltink, S., Advances in ultrahigh-pressure liquid chromatography technology and system design. Anal. Chem. 2016, 88, 262-278.
Fekete, S., Kohler, I., Rudaz, S., Guillarme, D., Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. J. Pharm. Biomed. Anal. 2014, 87, 105-119.
Paul, C., Steiner, F., Dong, M. W., HPLC autosamplers: Perspectives, principles, and practices. LC-GC North Am. 2019, 37, 514-529.
Funari, C. S., Carneiro, R. L., Andrade, A. M., Hilder, E. F., Cavalheiro, A. J., Green chromatographic fingerprinting: An environmentally friendly approach for the development of separation methods for fingerprinting complex matrices. J. Sep. Sci. 2014, 37, 37-44.
Funari, C. S., Carneiro, R. L., Khandagale, M. M., Kavalheiro, A. J., Hilder, E. F., Acetone as a greener alternative to acetonitrile in liquid chromatographic fingerprinting. J. Sep. Sci. 2015, 38, 1458-1465.
Foster, S. W., Xie, X., Pham, M., Peaden, P. A., Patil, L. M., Tolley, L. T., Farnsworth, P. B., Tolley, H. D., Lee, M. L., Grinias, J. P., Portable capillary liquid chromatography for pharmaceutical and illicit drug analysis. J. Sep. Sci. 2020, 43, 1623-1627.

Auteurs

Glenn A Kresge (GA)

Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ, USA.

Sylvia Grosse (S)

Thermo Fisher Scientific, Germering, Germany.

Alexis Zimmer (A)

Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ, USA.

Kaitlin M Grinias (KM)

Analytical Platforms & Platform Modernization , GlaxoSmithKline, Collegeville, PA, USA.

Mauro De Pra (M)

Thermo Fisher Scientific, Germering, Germany.

Jenny-Marie T Wong (JT)

Thermo Fisher Scientific, Waltham, MA, USA.

Frank Steiner (F)

Thermo Fisher Scientific, Germering, Germany.

James P Grinias (JP)

Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ, USA.

Articles similaires

Humans Pharmaceutical Preparations Drug Utilization Prescription Drugs
Humans Chromatography, High Pressure Liquid Acetaminophen COVID-19 SARS-CoV-2
Humans Biomarkers Machine Learning Cardiovascular Diseases Male
Cinnamomum aromaticum China Chromatography, High Pressure Liquid Ecosystem Climate Change

Classifications MeSH