A sustainable and green HPLC-PDA technique for the simultaneous estimation of Post-COVID-19 syndrome co-administered drugs with greenness and whiteness assessment.
Humans
Chromatography, High Pressure Liquid
/ methods
Acetaminophen
/ therapeutic use
COVID-19
SARS-CoV-2
/ isolation & purification
COVID-19 Drug Treatment
Ketoprofen
/ analogs & derivatives
Post-Acute COVID-19 Syndrome
Anti-Inflammatory Agents, Non-Steroidal
/ therapeutic use
Green Chemistry Technology
/ methods
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
25
07
2024
accepted:
03
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
COVID-19 has been a growing global concern in the past four years. Several syndromes associated with this multi-organ viral infection have been observed since the outbreak. According to estimates, 10-15% of people with SARS-CoV- infection may have post-COVID-19 syndrome. Even months after infection, common residual signs and symptoms include myalgia, exhaustion, shortness of breath, rapid heartbeat, stroke, and memory and cognitive impairment which can negatively affect survivors' quality of life and may consequently lead to their death. Therefore, it is necessary to think about potential therapy options for dealing with both short and long-term impacts. Paracetamol (a common analgesic and antipyretic) and Dexketoprofen Trometamol (a non-steroidal anti-inflammatory drug) are used together to relieve post-COVID symptoms like myalgia (muscle pain) and headache. Additionally, to prevent thrombotic events, Rivaroxaban is recommended for 35 days following discharge. Thus an eco-friendly HPLC-DAD technique was developed for simultaneous quantification of Paracetamol, Dexketoprofen Trometamol, and Rivaroxaban which are co-administered for treatment of post-COVID-19 syndrome. The suggested method was found to be linear in the concentration ranges of 3.00-45.00 µg/mL, 0.5-50.00 µg/mL, and 0.15-20.00 µg/mL, and a limit of detection down to 0.531 µg/mL, 0.095 µg/mL and 0.047 µg/mL for Paracetamol, Dexketoprofen Trometamol and Rivaroxaban, respectively. This method was effectively used to quantify the studied drugs in their bulk powder and spiked human plasma with high percentage recoveries (96.55-99.46%). The suggested approach was validated per International Conference on Harmonization (ICH) requirements and found to be within the acceptable ranges. The method was developed using Green Analytical Chemistry (GAC) principles, with the solvents used and run time having a significant effect on the method's greenness. "Non-toxic" ethanol served as the organic modifier in the mobile phase, moreover, the total run time was 12 min making it suitable for the routine analysis of the mentioned drugs in plasma samples. To get a full image of the method's greenness profile; two most recent greenness assessment tools, the Green Analytical Procedure Index (GAPI), and the Analytical GREEnness metric (AGREE), were employed, with White Analytical Chemistry (WAC) principles proving its environmental safety.
Identifiants
pubmed: 39482348
doi: 10.1038/s41598-024-75216-4
pii: 10.1038/s41598-024-75216-4
doi:
Substances chimiques
Acetaminophen
362O9ITL9D
Ketoprofen
90Y4QC304K
Anti-Inflammatory Agents, Non-Steroidal
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26222Informations de copyright
© 2024. The Author(s).
Références
Organization, W. H. Listings of WHO’s response to COVID-19. Available online at: URL (2020). https://www.who.int/news-room/detail/29-06-2020-covidtimeline (accessed October 5, 2020) (2021).
Turana, Y., Nathaniel, M., Shen, R., Ali, S. & Aparasu, R. R. Citicoline and COVID-19-related cognitive and other neurologic complications. Brain Sci. 12, 59 (2021).
doi: 10.3390/brainsci12010059
pubmed: 35053804
pmcid: 8782421
Organization W. H.
Liu, Y. C., Kuo, R. L. & Shih, S. R. COVID-19: the first documented coronavirus pandemic in history. Biomed. J. 43, 328–333 (2020).
doi: 10.1016/j.bj.2020.04.007
pubmed: 32387617
pmcid: 7199674
WHO, C. O. World health organization. Air Quality Guidelines for Europe. (2020).
Baloch, S., Baloch, M. A., Zheng, T. & Pei, X. The coronavirus disease 2019 (COVID-19) pandemic. Tohoku J. Exp. Med. 250, 271–278 (2020).
doi: 10.1620/tjem.250.271
pubmed: 32321874
Mao, L. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77, 683–690 (2020).
doi: 10.1001/jamaneurol.2020.1127
pubmed: 32275288
Cagnazzo, F. et al. Neurological manifestations of patients infected with the SARS-CoV-2: a systematic review of the literature. J. Neurol. 268, 2656–2665 (2021).
doi: 10.1007/s00415-020-10285-9
pubmed: 33125542
Nuzzo, D. et al. Long-term brain disorders in post Covid-19 neurological syndrome (PCNS) patient. Brain Sci. 11, 454 (2021).
doi: 10.3390/brainsci11040454
pubmed: 33918426
pmcid: 8066611
Rudroff, T., Fietsam, A. C., Deters, J. R., Bryant, A. D. & Kamholz, J. Post-COVID-19 fatigue: potential contributing factors. Brain Sci. 10, 1012 (2020).
doi: 10.3390/brainsci10121012
pubmed: 33352638
pmcid: 7766297
Salihefendic, N., Zildzic, M. & Huseinagic, H. Ischemic vasculitis as a cause of Brain Disorder’s in patients with long covid: Case Report. Med. Arch. 75, 471 (2021).
doi: 10.5455/medarh.2021.75.471-474
pubmed: 35169377
pmcid: 8810149
Nalbandian, A., Desai, A. D. & Wan, E. Y. Post-COVID-19 condition. Annu. Rev. Med. 74, 55–64 (2023).
doi: 10.1146/annurev-med-043021-030635
pubmed: 35914765
Mardani, M. Vol. 15 (Brieflands, (2020).
Mulla, T. S., Rao, J. R., Yadav, S. S., Bharekar, V. V. & Rajput, M. P. Development and validation of HPLC method for simultaneous quantitation of Paracetamol and dexketoprofen trometamol in bulk drug and formulation. Pharmacie Globale. 7, 1–4 (2011).
Rao, J. R., Mulla, T. S., Bharekar, V. V., Yadav, S. S. & Rajput, M. P. Simultaneous HPTLC determination of paracetamol and dexketoprofen trometamol in pharmaceutical dosage form. Der Pharma Chem. 3, 32–38 (2011).
Çelebier, M., Reçber, T., Koçak, E., Altınöz, S. & Kır, S. Determination of rivaroxaban in human plasma by solid-phase extraction–high performance liquid chromatography. J. Chromatogr. Sci. 54, 216–220 (2016).
pubmed: 26351327
Derogis, P. B. M. et al. Determination of rivaroxaban in patient’s plasma samples by anti-xa chromogenic test associated to high performance liquid chromatography tandem Mass Spectrometry (HPLC-MS/MS). PLoS One. 12, e0171272 (2017).
doi: 10.1371/journal.pone.0171272
pubmed: 28170419
pmcid: 5295670
Ramacciotti, E. et al. Rivaroxaban versus no anticoagulation for post-discharge thromboprophylaxis after hospitalisation for COVID-19 (MICHELLE): an open-label, multicentre, randomised, controlled trial. Lancet. 399, 50–59 (2022).
doi: 10.1016/S0140-6736(21)02392-8
pubmed: 34921756
Pokharkar, D. et al. Stability indicating RP-HPLC-PDA method for simultaneous determination of Dexketoprofen Trometamol and Paracetamol from tablet dosage form. Der Pharmacia Letter. 3, 49–57 (2011).
Kothapalli, L. et al. Simultaneous spectrophotometric estimation of Paracetamol and dexketoprofen trometamol in pharmaceutical dosage form, Der Pharm. Der Pharma Chem. 3, 365–371 (2011).
Seshamamba, B. & Sekaran, C. Spectrophotometric quantification of direct factor xa inhibitor, rivaroxaban, in raw and tablet dosage form. Glob Drugs th. 2, 1–8 (2017).
Seshamamba, B. S. V. & Sekaran, C. B. Spectrophotometric Analysis for the quantification of Rivaroxaban in Bulk and Tablet Dosage Form. Int. J. Med. Pharm. Sci. 7, 21–34 (2017).
El-Bagary, R. I., Elkady, E. F., Farid, N. A. & Youssef, N. F. A validated Spectrophotometric Method and Thermodynamic studies for the determination of Cilostazol and Rivaroxaban in Pharmaceutical preparations using Fe-Phenanthroline System. Anal. Chem. Lett. 7, 676–688 (2017).
doi: 10.1080/22297928.2017.1385420
Seshamamba, B. S. V., Satyanarayana, P. V. V. & Sekaran, C. B. Application of stability indicating HPLC method with UV detector to the analysis of rivaroxaban in bulk and tablet dosage form. Chem. Sci. Trans. 3, 1546–1554 (2014).
Ramisetti, N. R. & Kuntamukkala, R. Development and validation of a stability indicating LC-PDA-MS/MS method for separation, identification and characterization of process related and stress degradation products of rivaroxaban. RSC Adv. 4, 23155–23167 (2014).
doi: 10.1039/c4ra00744a
Walter, M. E. et al. Development and validation of a stability-indicating RP-HPLC method for the determination of rivaroxaban in pharmaceutical formulations. Lat Am. J. Pharm. 34, 1503–1510 (2015).
Hadagali, M. D. Determination of rivaroxaban in pure, pharmaceutical formulations and human plasma samples by RP-HPLC. Int. J. Adv. Pharm. Anal. 5, 65–68 (2015).
Souri, E., Mottaghi, S., Zargarpoor, M., Ahmadkhaniha, R. & Jalalizadeh, H. Development of a stability-indicating HPLC method and a dissolution test for rivaroxaban dosage forms. Acta Chromatogr. 28, 347–361 (2016).
doi: 10.1556/1326.2016.28.3.05
Elesbao Walter, M. et al. Micellar Electrokinetic Capillary Method for the Analysis of Rivaroxaban and its correlation with RP–LC method and Bioassay. Curr. Anal. Chem. 13, 379–385 (2017).
Arous, B., Al-Mardini, M. A., Ghazal, H. & Al-Lahham, F. Stability-Indicating Method for the determination of Rivaroxaban and its Degradation products using LC-MS and TLC. RJPT. 11, 212–220 (2018).
doi: 10.5958/0974-360X.2018.00040.9
Alam, P. et al. Ecofriendly densitometric RP-HPTLC method for determination of rivaroxaban in nanoparticle formulations using green solvents. RSC Adv. 10, 2133–2140 (2020).
doi: 10.1039/C9RA07825H
pubmed: 35494604
pmcid: 9048746
Süslü, İ., Çelebier, M. & Altınöz, S. Electrochemical behaviour investigation and square-wave voltammetric determination of rivaroxaban in pharmaceutical dosage forms. Anal. Methods. 6, 9397–9403 (2014).
doi: 10.1039/C4AY01871K
Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta. 181, 204–209 (2018).
doi: 10.1016/j.talanta.2018.01.013
pubmed: 29426502
Pena-Pereira, F., Wojnowski, W. & Tobiszewski, M. AGREE—Analytical GREEnness metric approach and software. Anal. Chem. 92, 10076–10082 (2020).
doi: 10.1021/acs.analchem.0c01887
pubmed: 32538619
pmcid: 7588019
Nowak, P. M., Wietecha-Posłuszny, R. & Pawliszyn, J. White Analytical Chemistry: an approach to reconcile the principles of Green Analytical Chemistry and functionality. TrAC Trends Anal. Chem. 138, 116223 (2021).
doi: 10.1016/j.trac.2021.116223
Guideline, I. H. T. Validation of analytical procedures: text and methodology. Q2 (R1) 1, 05 (2005).
Pharmacopeia, U. in The United States Pharmacopeia-The National Formulary, The United States Pharmacopeial Convention, Rockville, MD. 195–197.
Van der Westhuizen, J., Kuo, P., Reed, P. & Holder, K. Randomised controlled trial comparing oral and intravenous Paracetamol (acetaminophen) plasma levels when given as preoperative analgesia. Anaesth. Intensive Care. 39, 242–246 (2011).
doi: 10.1177/0310057X1103900214
pubmed: 21485673
Barbanoj, M. J., Antonijoan, R. M. & Gich, I. Clinical pharmacokinetics of dexketoprofen. Clin. Pharmacokinet. 40, 245–262 (2001).
doi: 10.2165/00003088-200140040-00002
pubmed: 11368291
Qian, J., Gu, S. & Yan, Y. j. determination of rivaroxaban in rat plasma by ultra-high‐performance liquid chromatography–Q‐Orbitrap high‐resolution mass spectrometry and its application to a pharmacokinetic study. Biomed. Chromatogr. 36, e5491 (2022).
doi: 10.1002/bmc.5491
pubmed: 36003022
Hemdan, A., Magdy, R., Farouk, M. & Fares, N. V. Central composite design as an analytical optimization tool for the development of eco-friendly HPLC-PDA methods for two antihypertensive mixtures containing the angiotensin receptor blocker Valsartan: greenness assessment by four evaluation tools. Microchem J. 183, 108105 (2022).
doi: 10.1016/j.microc.2022.108105
Keith, L. H., Gron, L. U. & Young, J. L. Green analytical methodologies. Chem. Rev. 107, 2695–2708 (2007).
doi: 10.1021/cr068359e
pubmed: 17521200
Nagieb, H. M., Abdelwahab, N. S., Abdelrahman, M. M., Zaazaa, H. E. & Ghoniem, N. S. Greenness assessment of UPLC/MS/MS method for determination of two antihypertensive agents and their harmful impurities with ADME/TOX profile study. Sci. Rep. 13, 19318 (2023).
doi: 10.1038/s41598-023-46636-5
pubmed: 37935740
pmcid: 10630503
Habib, N. M., Tony, R. M., AlSalem, H. S., Algethami, F. K. & Gamal, M. Evaluation of the greenness, whiteness, and blueness profiles of stability indicating HPLC method for determination of denaverine hydrochloride and benzyl alcohol in pharmaceuticals. Microchem J. 201, 110733 (2024).
doi: 10.1016/j.microc.2024.110733
Algethami, F. K. & Gamal, M. Development of a simple, eco-friendly HPLC-DAD method for tulathromycin analysis: ensuring stability and assessing greenness. Microchem J. 195, 109511 (2023).
doi: 10.1016/j.microc.2023.109511
Prajapati, P. B., Radadiya, K. & Shah, S. A. Quality risk management based: analytical quality by design approach to eco-friendly and versatile chromatography method for simultaneous estimation of multiple fixed-dose-combination products of anti-diabetic drugs. J. Pharm. Innov. 17, 1–18 (2020).
Prajapati, P., Shah, H. & Shah, S. A. Implementation of QRM and DoE-based quality by design approach to VEER chromatography method for simultaneous estimation of multiple combined dosage forms of Paracetamol. J. Pharm. Innov. 17, 1–17 (2020).
Gamal, M., Naguib, I. A., Panda, D. S. & Abdallah, F. F. Comparative study of four greenness assessment tools for selection of greenest analytical method for assay of hyoscine N-butyl bromide. Anal. Methods. 13, 369–380 (2021).
doi: 10.1039/D0AY02169E
pubmed: 33404016