Acute Effects of Dynamic Stretching Followed by Vibration Foam Rolling on Sports Performance of Badminton Athletes.
Adult
Athletic Performance
/ physiology
Cross-Over Studies
Elasticity
Female
Humans
Knee
/ physiology
Lower Extremity
/ physiology
Male
Muscle Stretching Exercises
/ physiology
Muscle, Skeletal
/ physiology
Racquet Sports
/ physiology
Range of Motion, Articular
Vibration
Warm-Up Exercise
/ physiology
Young Adult
Warm up exercise
athletic performance
foam rolling
sports
vibration therapy
Journal
Journal of sports science & medicine
ISSN: 1303-2968
Titre abrégé: J Sports Sci Med
Pays: Turkey
ID NLM: 101174629
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
29
03
2020
accepted:
05
04
2020
entrez:
12
5
2020
pubmed:
12
5
2020
medline:
20
1
2021
Statut:
epublish
Résumé
Dynamic stretching (DS) is performed to increase sports performance and is also used primarily for transiently increasing range of motion (ROM). Recently, vibration foam rolling (VFR) has emerged. Its underlying concept is that it combines foam rolling techniques with local vibration to improve ROM and muscular activation concurrently. This crossover study investigated the effects of DS or DS followed by VFR (DS + VFR) during warm-ups on flexibility, muscle stiffness, power, and agility of the lower limbs in badminton athletes. Forty badminton players performed DS or DS + VFR as warm-up exercises on two occasions in a randomized order. The target muscle groups were the bilateral shoulder, anterior and posterior thigh, posterior calf, and lower back. Main outcome measures: The primary outcome was knee range of motion (ROM), and the secondary outcomes were muscle stiffness, lower limb power (countermovement jump [CMJ]), and agility. Results indicated that the protocols improved performance. DS increased knee flexion ROM (% change = 1.92, ES = 0.3, p = 0.033), CMJ height (% change = 5.04, ES = 0.2, p = 0.004), and agility (% change = -4.97, ES = 0.4, p < 0.001) but increased quadriceps muscle stiffness (% change = 3.74, ES = 0.3, p = 0.001) and increased gastrocnemius muscle stiffness (% change = 10.39, ES = 0.5, p = 0.001). DS + VFR increased knee extension ROM (% change =2.87, ES = 0.4, p = 0.003), reduced quadriceps muscle stiffness (% change = -2.79, ES = 0.3, p = 0.017), CMJ height (% change = 2.41, ES = 0.1, p = 0.037), and agility (% change = -4.74, ES = 0.2, p < 0.001). DS + VFR was not significantly superior to DS, except for muscle stiffness reduction. Taken together, we suggest that practitioners consider DS as a first line of warm-up exercise to increase ROM, CMJ height, and agility in athletes. Moreover, the addition of VFR to DS results in a large reduction of muscle stiffness, potentially reducing the risk of sports injury. Athletes, coaches and athletic professionals may consider them when selecting effective warm-up practices to augment athletic performance.
Types de publication
Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
420-428Informations de copyright
© Journal of Sports Science and Medicine.
Références
J Strength Cond Res. 2010 Aug;24(8):2001-11
pubmed: 19855310
J Sport Health Sci. 2016 Dec;5(4):476-483
pubmed: 30356566
BMC Musculoskelet Disord. 2006 Mar 31;7:33
pubmed: 16579850
J Exerc Rehabil. 2019 Aug 28;15(4):560-565
pubmed: 31523677
Sports Med. 2018 Feb;48(2):299-325
pubmed: 29063454
PLoS One. 2018 Feb 1;13(2):e0191801
pubmed: 29390001
J Sports Sci. 2017 Mar;35(5):457-462
pubmed: 27075213
Clin Physiol Funct Imaging. 2014 Nov;34(6):485-92
pubmed: 24438386
J Sport Rehabil. 2018 Oct 1;:1-7
pubmed: 28787233
Behav Res Methods. 2007 May;39(2):175-91
pubmed: 17695343
Nat Rev Mol Cell Biol. 2001 May;2(5):387-92
pubmed: 11331913
J Sports Sci. 2018 Nov;36(22):2575-2582
pubmed: 29697023
Br J Sports Med. 2015 Sep;49(17):1157-8
pubmed: 26124470
PLoS One. 2018 May 3;13(5):e0196724
pubmed: 29723229
J Strength Cond Res. 2011 Sep;25(9):2453-63
pubmed: 21792071
Sports Med. 2019 Aug;49(8):1173-1181
pubmed: 31256353
Sports Med. 2012 Mar 1;42(3):209-26
pubmed: 22239734
J Exerc Rehabil. 2019 Feb 25;15(1):50-54
pubmed: 30899736
J Strength Cond Res. 2011 Jul;25(7):1925-31
pubmed: 21701282
J Sports Sci Med. 2011 Mar 01;10(1):19-30
pubmed: 24149291
Clin Biomech (Bristol, Avon). 2009 Jan;24(1):77-81
pubmed: 19064307
J Strength Cond Res. 2006 Aug;20(3):492-9
pubmed: 16937960
J Sports Sci. 2013;31(5):479-87
pubmed: 23113555
Med Sci Sports Exerc. 2014 Mar;46(3):586-93
pubmed: 24042312
Medicine (Baltimore). 2019 Jan;98(2):e14134
pubmed: 30633230
Scand J Med Sci Sports. 2017 Jan;27(1):99-106
pubmed: 26669626
Sports Med. 2007;37(12):1089-99
pubmed: 18027995
Arch Gerontol Geriatr. 2012 Sep-Oct;55(2):e31-9
pubmed: 22503549
Int J Sports Physiol Perform. 2019 Nov 6;:1-6
pubmed: 31693996
Int J Environ Res Public Health. 2019 Dec 27;17(1):
pubmed: 31892277
Eur J Appl Physiol. 2010 Jun;109(3):491-8
pubmed: 20162300
J Sports Sci. 2010 Jan;28(2):183-91
pubmed: 20391092
J Sports Sci Med. 2014 May 01;13(2):403-9
pubmed: 24790497
Physiol Meas. 2011 Aug;32(8):1315-26
pubmed: 21765207
J Sports Sci Med. 2019 Feb 11;18(1):13-20
pubmed: 30787647
Int J Environ Res Public Health. 2020 Jan 04;17(1):
pubmed: 31948000
J Bodyw Mov Ther. 2019 Jul;23(3):555-560
pubmed: 31563369
J Musculoskelet Neuronal Interact. 2018 Jun 1;18(2):262-267
pubmed: 29855449
Eur J Appl Physiol. 2011 Nov;111(11):2633-51
pubmed: 21373870
J Sports Sci. 2015;33(15):1574-9
pubmed: 25555023
PeerJ. 2019 Nov 26;7:e8000
pubmed: 31788353
Br J Sports Med. 2008 May;42(5):373-8
pubmed: 18182623
J Sports Sci. 2003 Sep;21(9):707-32
pubmed: 14579868
J Sport Rehabil. 2017 Nov;26(6):469-477
pubmed: 27736289
Sports Med. 2005;35(7):585-95
pubmed: 16026172
J Strength Cond Res. 2014 Jan;28(1):154-60
pubmed: 23591944
J Strength Cond Res. 2013 Mar;27(3):812-21
pubmed: 22580977
J Sports Sci Med. 2019 Feb 11;18(1):172-180
pubmed: 30787665
J Orthop Sports Phys Ther. 2005 Apr;35(4):246-52
pubmed: 15901126