An automated tissue-to-diagnosis pipeline using intraoperative stimulated Raman histology and deep learning.

Stimulated Raman histology convolutional neural networks deep learning label-free imaging

Journal

Molecular & cellular oncology
ISSN: 2372-3556
Titre abrégé: Mol Cell Oncol
Pays: United States
ID NLM: 101642411

Informations de publication

Date de publication:
2020
Historique:
received: 16 02 2020
revised: 23 02 2020
accepted: 25 02 2020
entrez: 12 5 2020
pubmed: 12 5 2020
medline: 12 5 2020
Statut: epublish

Résumé

We recently developed and validated a bedside tissue-to-diagnosis pipeline using stimulated Raman histology (SRH), a label-free optical imaging method, and deep convolutional neural networks (CNN) in prospective clinical trial. Our CNN learned a hierarchy of interpretable histologic features found in the most common brain tumors and was able to accurately segment cancerous regions in SRH images.

Identifiants

pubmed: 32391430
doi: 10.1080/23723556.2020.1736742
pii: 1736742
pmc: PMC7199763
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1736742

Subventions

Organisme : NCI NIH HHS
ID : R01 CA226527
Pays : United States

Informations de copyright

© 2020 The Author(s). Published with license by Taylor & Francis Group, LLC.

Références

JAMA. 2016 Dec 13;316(22):2402-2410
pubmed: 27898976
Nature. 2017 Feb 2;542(7639):115-118
pubmed: 28117445
JAMA. 2005 Dec 28;294(24):3135-7
pubmed: 16380595
Nat Biomed Eng. 2017;1:
pubmed: 28955599
Science. 2008 Dec 19;322(5909):1857-61
pubmed: 19095943
Nat Med. 2020 Jan;26(1):52-58
pubmed: 31907460
Arch Pathol Lab Med. 2013 Dec;137(12):1723-32
pubmed: 23738764
Cancer Res. 2018 Jan 1;78(1):278-289
pubmed: 29093006
Nat Med. 2018 Sep;24(9):1337-1341
pubmed: 30104767

Auteurs

Todd C Hollon (TC)

Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA.

Daniel A Orringer (DA)

Department of Neurosurgery, New York University, New York, NY, USA.

Classifications MeSH