Fecal microbiota transplant rescues mice from human pathogen mediated sepsis by restoring systemic immunity.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
11 05 2020
Historique:
received: 20 08 2019
accepted: 11 03 2020
entrez: 13 5 2020
pubmed: 13 5 2020
medline: 6 8 2020
Statut: epublish

Résumé

Death due to sepsis remains a persistent threat to critically ill patients confined to the intensive care unit and is characterized by colonization with multi-drug-resistant healthcare-associated pathogens. Here we report that sepsis in mice caused by a defined four-member pathogen community isolated from a patient with lethal sepsis is associated with the systemic suppression of key elements of the host transcriptome required for pathogen clearance and decreased butyrate expression. More specifically, these pathogens directly suppress interferon regulatory factor 3. Fecal microbiota transplant (FMT) reverses the course of otherwise lethal sepsis by enhancing pathogen clearance via the restoration of host immunity in an interferon regulatory factor 3-dependent manner. This protective effect is linked to the expansion of butyrate-producing Bacteroidetes. Taken together these results suggest that fecal microbiota transplantation may be a treatment option in sepsis associated with immunosuppression.

Identifiants

pubmed: 32393794
doi: 10.1038/s41467-020-15545-w
pii: 10.1038/s41467-020-15545-w
pmc: PMC7214422
doi:

Substances chimiques

Histone Deacetylase Inhibitors 0
Interferon Regulatory Factor-3 0
Irf3 protein, mouse 0
Butyric Acid 107-92-6

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2354

Subventions

Organisme : NIDDK NIH HHS
ID : P30 DK042086
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM062344
Pays : United States
Organisme : NIDDK NIH HHS
ID : T32 DK007074
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007281
Pays : United States

Références

Laxminarayan, R. et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).
pubmed: 24252483 doi: 10.1016/S1473-3099(13)70318-9 pmcid: 24252483
WHO. Antimicrobial resistance: global report on surveillance 2014. WHO. http://www.who.int/drugresistance/documents/surveillancereport/en/ . (Accessed: 28th June 2018).
Alverdy, J. C. & Krezalek, M. A. Collapse of the microbiome, emergence of the pathobiome, and the immunopathology of sepsis. Crit. Care Med. 45, 337–347 (2017).
pubmed: 28098630 pmcid: 5245179 doi: 10.1097/CCM.0000000000002172
Zaborin, A. et al. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. MBio 5, e01361-01314 (2014).
doi: 10.1128/mBio.01361-14
Sommer, M. O. A., Dantas, G. & Church, G. M. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325, 1128–1131 (2009).
pubmed: 19713526 pmcid: 4720503 doi: 10.1126/science.1176950
Taur, Y. et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55, 905–914 (2012).
pubmed: 22718773 pmcid: 3657523 doi: 10.1093/cid/cis580
Ayres, J. S., Trinidad, N. J. & Vance, R. E. Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat. Med. 18, 799–806 (2012).
pubmed: 22522562 pmcid: 3472005 doi: 10.1038/nm.2729
Alverdy, J. et al. Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: evidence for in vivo virulence expression in Pseudomonas aeruginosa. Ann. Surg. 232, 480–489 (2000).
pubmed: 10998646 pmcid: 1421180 doi: 10.1097/00000658-200010000-00003
Zaborin, A. et al. Phosphate-containing polyethylene glycol polymers prevent lethal sepsis by multidrug-resistant pathogens. Antimicrob. Agents Chemother. 58, 966–977 (2014).
pubmed: 24277029 pmcid: 3910877 doi: 10.1128/AAC.02183-13
Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).
pubmed: 24096337 pmcid: 4194195 doi: 10.1038/nri3535
Khoruts, A. & Sadowsky, M. J. Understanding the mechanisms of faecal microbiota transplantation. Nat. Rev. Gastroenterol. Hepatol. 13, 508–516 (2016).
pubmed: 27329806 pmcid: 5909819 doi: 10.1038/nrgastro.2016.98
van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).
pubmed: 23323867 doi: 10.1056/NEJMoa1205037
Bhavsar, A. P., Guttman, J. A. & Finlay, B. B. Manipulation of host-cell pathways by bacterial pathogens. Nature 449, 827–834 (2007).
pubmed: 17943119 doi: 10.1038/nature06247
Brodsky, I. E. & Medzhitov, R. Targeting of immune signalling networks by bacterial pathogens. Nat. Cell Biol. 11, 521–526 (2009).
pubmed: 19404331 doi: 10.1038/ncb0509-521
Rahman, M. M. & McFadden, G. Modulation of NF-κB signalling by microbial pathogens. Nat. Rev. Microbiol. 9, 291–306 (2011).
pubmed: 21383764 pmcid: 3611960 doi: 10.1038/nrmicro2539
Sansonetti, P. J. & Di Santo, J. P. Debugging how bacteria manipulate the immune response. Immunity 26, 149–161 (2007).
pubmed: 17307704 doi: 10.1016/j.immuni.2007.02.004
Baxt, L. A., Garza-Mayers, A. C. & Goldberg, M. B. Bacterial subversion of host innate immune pathways. Science 340, 697–701 (2013).
pubmed: 23661751 doi: 10.1126/science.1235771
Honda, K. & Taniguchi, T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol. 6, 644–658 (2006).
pubmed: 16932750 doi: 10.1038/nri1900
Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).
pubmed: 21616434 doi: 10.1016/j.immuni.2011.05.006
Silmon de Monerri, N. C. & Kim, K. Pathogens hijack the epigenome: a new twist on host-pathogen interactions. Am. J. Pathol. 184, 897–911 (2014).
pubmed: 24525150 pmcid: 3970002 doi: 10.1016/j.ajpath.2013.12.022
Arbibe, L. et al. An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat. Immunol. 8, 47–56 (2007).
pubmed: 17159983 doi: 10.1038/ni1423
Hayden, M. S. & Ghosh, S. Shared principles in NF-kappaB signaling. Cell 132, 344–362 (2008).
pubmed: 18267068 doi: 10.1016/j.cell.2008.01.020
Ma, A. & Malynn, B. A. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat. Rev. Immunol. 12, 774–785 (2012).
pubmed: 23059429 pmcid: 3582397 doi: 10.1038/nri3313
Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).
pubmed: 26603901 pmcid: 5004891 doi: 10.1038/nri3921
Carrigan, S. O. et al. IFN regulatory factor 3 contributes to the host response during Pseudomonas aeruginosa lung infection in mice. J. Immunol. 185, 3602–3609 (2010).
pubmed: 20720199 doi: 10.4049/jimmunol.0903429
Parker, D. et al. Streptococcus pneumoniae DNA initiates type I interferon signaling in the respiratory tract. MBio 2, e00016-00011 (2011).
doi: 10.1128/mBio.00016-11
von Bernuth, H. et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321, 691–696 (2008).
doi: 10.1126/science.1158298
Li, Q. & Verma, I. M. NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).
pubmed: 12360211 doi: 10.1038/nri910
Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13, 539–548 (2000).
pubmed: 11070172 doi: 10.1016/S1074-7613(00)00053-4
Walker, W. E., Bozzi, A. T. & Goldstein, D. R. IRF3 contributes to sepsis pathogenesis in the mouse cecal ligation and puncture model. J. Leukoc. Biol. 92, 1261–1268 (2012).
pubmed: 23048204 pmcid: 3501894 doi: 10.1189/jlb.0312138
Shimizu, K. et al. Altered gut flora and environment in patients with severe SIRS. J. Trauma 60, 126–133 (2006).
pubmed: 16456446 doi: 10.1097/01.ta.0000197374.99755.fe pmcid: 16456446
Thorburn, A. N., Macia, L. & Mackay, C. R. Diet, metabolites, and ‘western-lifestyle’ inflammatory diseases. Immunity 40, 833–842 (2014).
pubmed: 24950203 doi: 10.1016/j.immuni.2014.05.014 pmcid: 24950203
Blander, J. M., Longman, R. S., Iliev, I. D., Sonnenberg, G. F. & Artis, D. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 18, 851–860 (2017).
pubmed: 28722709 pmcid: 5800875 doi: 10.1038/ni.3780
Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).
pubmed: 28856738 pmcid: 5657496 doi: 10.1111/imr.12567
Meisel, M. et al. Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis. ISME J. 11, 15–30 (2017).
pubmed: 27648810 doi: 10.1038/ismej.2016.114 pmcid: 27648810
Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).
pubmed: 24288368 doi: 10.1093/nar/gkt1244 pmcid: 24288368
Pryde, S. E., Duncan, S. H., Hold, G. L., Stewart, C. S. & Flint, H. J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217, 133–139 (2002).
pubmed: 12480096 doi: 10.1111/j.1574-6968.2002.tb11467.x pmcid: 12480096
Wexler, A. G. & Goodman, A. L. An insider’s perspective: Bacteroides as a window into the microbiome. Nat. Microbiol. 2, 17026 (2017).
pubmed: 28440278 pmcid: 5679392 doi: 10.1038/nmicrobiol.2017.26
Cullen, T. W. et al. Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 347, 170–175 (2015).
pubmed: 25574022 pmcid: 4388331 doi: 10.1126/science.1260580
Zhang, L.-T. et al. Sodium butyrate prevents lethality of severe sepsis in rats. Shock 27, 672–677 (2007).
pubmed: 17505308 doi: 10.1097/SHK.0b013e31802e3f4c
Zhang, L., Jin, S., Wang, C., Jiang, R. & Wan, J. Histone deacetylase inhibitors attenuate acute lung injury during cecal ligation and puncture-induced polymicrobial sepsis. World J. Surg. 34, 1676–1683 (2010).
pubmed: 20177680 doi: 10.1007/s00268-010-0493-5
Ji, M. et al. Valproic acid attenuates lipopolysaccharide-induced acute lung injury in mice. Inflammation 36, 1453–1459 (2013).
pubmed: 23846716 doi: 10.1007/s10753-013-9686-z
Li, Y. et al. Surviving lethal septic shock without fluid resuscitation in a rodent model. Surgery 148, 246–254 (2010).
pubmed: 20561658 pmcid: 4894305 doi: 10.1016/j.surg.2010.05.003
von Knethen, A. & Brüne, B. Histone deacetylation inhibitors as therapy concept in sepsis. Int. J. Mol. Sci. 20, pii: E346 (2019).
Bohnhoff, M., Miller, C. P. & Martin, W. R. Resistance of the mouse’s intestinal tract to experimental Salmonella infection: I. factors which interfere with the initiation of infection by oral inoculation. J. Exp. Med. 120, 805–816 (1964).
pubmed: 14247721 pmcid: 2137858 doi: 10.1084/jem.120.5.805
Cherrington, C. A., Hinton, M., Pearson, G. R. & Chopra, I. Short-chain organic acids at ph 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. J. Appl. Bacteriol. 70, 161–165 (1991).
pubmed: 1902205 doi: 10.1111/j.1365-2672.1991.tb04442.x
Steed, A. L. et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357, 498–502 (2017).
pubmed: 28774928 pmcid: 5753406 doi: 10.1126/science.aam5336
Munford, R. S. Murine responses to endotoxin: another dirty little secret? J. Infect. Dis. 201, 175–177 (2010).
pubmed: 20001601 pmcid: 2798013 doi: 10.1086/649558
Opal, S. M. et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 309, 1154–1162 (2013).
pubmed: 23512062 doi: 10.1001/jama.2013.2194
Du, P., Kibbe, W. A. & Lin, S. M. lumi: a pipeline for processing Illumina microarray. Bioinformatics. 24, 1547–1548 (2008).
pubmed: 18467348 doi: 10.1093/bioinformatics/btn224
Lin, S. M. et al. Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res. 36, e11 (2008).
pubmed: 18178591 pmcid: 2241869 doi: 10.1093/nar/gkm1075
Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 3, Article3 (2004).
pubmed: 16646809 doi: 10.2202/1544-6115.1027
Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 57, 289–300 (1995).
doi: 10.1111/j.2517-6161.1995.tb02031.x
Eden, E. et al. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 10, 48 (2009).
pubmed: 19192299 pmcid: 2644678 doi: 10.1186/1471-2105-10-48
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Meth 10, 996–998 (2013).
doi: 10.1038/nmeth.2604
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 7, 335–336 (2010).
pubmed: 20383131 pmcid: 3156573 doi: 10.1038/nmeth.f.303
Eren, A. M. et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 4, 1111–1119 (2013).
pmcid: 3864673 doi: 10.1111/2041-210X.12114 pubmed: 3864673
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
pubmed: 22506599 pmcid: 3342519 doi: 10.1089/cmb.2012.0021
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
pubmed: 9254694 pmcid: 9254694 doi: 10.1093/nar/25.17.3389
Barman, M. et al. Enteric Salmonellosis Disrupts the Microbial Ecology of the Murine Gastrointestinal Tract. Infect. Immun. 76, 907–915 (2008).
pubmed: 18160481 doi: 10.1128/IAI.01432-07
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
pubmed: 23630581 pmcid: 3632530 doi: 10.1371/journal.pone.0061217
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 4302049 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Fish, J. A. et al. FunGene: the functional gene pipeline and repository. Front Microbiol 4, 291 (2013).
pubmed: 24101916 pmcid: 3787254 doi: 10.3389/fmicb.2013.00291

Auteurs

Sangman M Kim (SM)

Committee on Immunology, University of Chicago, Chicago, IL, USA.
Department of Medicine, University of Chicago, Chicago, IL, USA.
Department of Biology, University of San Francisco, San Francisco, CA, USA.

Jennifer R DeFazio (JR)

Department of Surgery, University of Chicago, Chicago, IL, USA.
Department of Surgery, Columbia University, New York, NY, USA.

Sanjiv K Hyoju (SK)

Department of Surgery, University of Chicago, Chicago, IL, USA.

Kishan Sangani (K)

Committee on Immunology, University of Chicago, Chicago, IL, USA.
Department of Medicine, University of Chicago, Chicago, IL, USA.

Robert Keskey (R)

Committee on Immunology, University of Chicago, Chicago, IL, USA.
Department of Surgery, University of Chicago, Chicago, IL, USA.

Monika A Krezalek (MA)

Department of Surgery, University of Chicago, Chicago, IL, USA.

Nikolai N Khodarev (NN)

Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA.

Naseer Sangwan (N)

Department of Surgery, University of Chicago, Chicago, IL, USA.
Argonne National Laboratory, Argonne, IL, USA.

Scott Christley (S)

Department of Surgery, University of Chicago, Chicago, IL, USA.

Katharine G Harris (KG)

Department of Medicine, University of Chicago, Chicago, IL, USA.

Ankit Malik (A)

Committee on Immunology, University of Chicago, Chicago, IL, USA.
Department of Medicine, University of Chicago, Chicago, IL, USA.

Alexander Zaborin (A)

Department of Surgery, University of Chicago, Chicago, IL, USA.

Romain Bouziat (R)

Committee on Immunology, University of Chicago, Chicago, IL, USA.
Department of Medicine, University of Chicago, Chicago, IL, USA.

Diana R Ranoa (DR)

Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA.

Mara Wiegerinck (M)

Department of Surgery, University of Chicago, Chicago, IL, USA.

Jordan D Ernest (JD)

Department of Medicine, University of Chicago, Chicago, IL, USA.

Baddr A Shakhsheer (BA)

Department of Surgery, University of Chicago, Chicago, IL, USA.

Irma D Fleming (ID)

Department of Surgery, University of Chicago, Chicago, IL, USA.

Ralph R Weichselbaum (RR)

Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA.

Dionysios A Antonopoulos (DA)

Department of Medicine, University of Chicago, Chicago, IL, USA.
Argonne National Laboratory, Argonne, IL, USA.

Jack A Gilbert (JA)

Department of Surgery, University of Chicago, Chicago, IL, USA.
Argonne National Laboratory, Argonne, IL, USA.

Luis B Barreiro (LB)

Department of Medicine, University of Chicago, Chicago, IL, USA.
Department of Genetics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada.
Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.

Olga Zaborina (O)

Department of Surgery, University of Chicago, Chicago, IL, USA.

Bana Jabri (B)

Committee on Immunology, University of Chicago, Chicago, IL, USA. bjabri@bsd.uchicago.edu.
Department of Medicine, University of Chicago, Chicago, IL, USA. bjabri@bsd.uchicago.edu.
Department of Pathology, University of Chicago, Chicago, IL, USA. bjabri@bsd.uchicago.edu.
Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, Chicago, IL, USA. bjabri@bsd.uchicago.edu.

John C Alverdy (JC)

Department of Surgery, University of Chicago, Chicago, IL, USA. jalverdy@surgery.bsd.uchicago.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH