Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes.


Journal

Nature reviews. Rheumatology
ISSN: 1759-4804
Titre abrégé: Nat Rev Rheumatol
Pays: United States
ID NLM: 101500080

Informations de publication

Date de publication:
06 2020
Historique:
accepted: 23 03 2020
pubmed: 13 5 2020
medline: 21 10 2020
entrez: 13 5 2020
Statut: ppublish

Résumé

Rheumatoid arthritis (RA) is a chronic immune-mediated disease that primarily affects the synovium of diarthrodial joints. During the course of RA, the synovium transforms into a hyperplastic invasive tissue that causes destruction of cartilage and bone. Fibroblast-like synoviocytes (FLS), which form the lining of the joint, are epigenetically imprinted with an aggressive phenotype in RA and have an important role in these pathological processes. In addition to producing the extracellular matrix and joint lubricants, FLS in RA produce pathogenic mediators such as cytokines and proteases that contribute to disease pathogenesis and perpetuation. The development of multi-omics integrative analyses have enabled new ways to dissect the mechanisms that imprint FLS, have helped to identify potential FLS subsets with distinct functions and have identified differences in FLS phenotypes between joints in individual patients. This Review provides an overview of advances in understanding of FLS biology and highlights omics approaches and studies that hold promise for identifying future therapeutic targets.

Identifiants

pubmed: 32393826
doi: 10.1038/s41584-020-0413-5
pii: 10.1038/s41584-020-0413-5
pmc: PMC7987137
mid: NIHMS1679841
doi:

Substances chimiques

Cadherins 0
osteoblast cadherin 156621-71-5
Protein Tyrosine Phosphatases EC 3.1.3.48

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

316-333

Subventions

Organisme : NIAMS NIH HHS
ID : R01 AR065466
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR071321
Pays : United States

Références

Klareskog, L., Catrina, A. I. & Paget, S. Rheumatoid arthritis. Lancet 373, 659–672 (2009).
pubmed: 19157532 doi: 10.1016/S0140-6736(09)60008-8
Arnett, F. C. et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31, 315–324 (1988).
pubmed: 3358796 doi: 10.1002/art.1780310302
Choy, E. H., Kavanaugh, A. F. & Jones, S. A. The problem of choice: current biologic agents and future prospects in RA. Nat. Rev. Rheumatol. 9, 154–163 (2013).
pubmed: 23419427 doi: 10.1038/nrrheum.2013.8
Holers, V. M. et al. Rheumatoid arthritis and the mucosal origins hypothesis: protection turns to destruction. Nat. Rev. Rheumatol. 14, 542–557 (2018).
pubmed: 30111803 pmcid: 6704378 doi: 10.1038/s41584-018-0070-0
Bartok, B. & Firestein, G. S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev. 233, 233–255 (2010).
pubmed: 20193003 pmcid: 2913689 doi: 10.1111/j.0105-2896.2009.00859.x
Filer, A. The fibroblast as a therapeutic target in rheumatoid arthritis. Curr. Opin. Pharmacol. 13, 413–419 (2013).
pubmed: 23562164 doi: 10.1016/j.coph.2013.02.006
Firestein, G. S. Biomedicine. Every joint has a silver lining. Science 315, 952–953 (2007).
pubmed: 17303744 doi: 10.1126/science.1139574
Valencia, X. et al. Cadherin-11 provides specific cellular adhesion between fibroblast-like synoviocytes. J. Exp. Med. 200, 1673–1679 (2004).
pubmed: 15611293 pmcid: 2211995 doi: 10.1084/jem.20041545
Bottini, N. & Firestein, G. S. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 9, 24–33 (2013).
pubmed: 23147896 doi: 10.1038/nrrheum.2012.190
Blewis, M. E. et al. Interactive cytokine regulation of synoviocyte lubricant secretion. Tissue Eng. Part A 16, 1329–1337 (2010).
pubmed: 19908966 doi: 10.1089/ten.tea.2009.0210
McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).
pubmed: 17525752 doi: 10.1038/nri2094
Firestein, G. S. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum. 39, 1781–1790 (1996).
pubmed: 8912499 doi: 10.1002/art.1780391103
Ai, R. et al. DNA methylome signature in synoviocytes from patients with early rheumatoid arthritis compared to synoviocytes from patients with longstanding rheumatoid arthritis. Arthritis Rheumatol. 67, 1978–1980 (2015).
pubmed: 25808728 pmcid: 4485541 doi: 10.1002/art.39123
Veale, D. & Firestein, G. S. in Kelley and Firestein’s textbook of rheumatology 10th edn, (eds Firestein, G. S. et al.) 20–33 (Elsevier, 2016).
Lever, J. D. & Ford, E. H. Histological, histochemical and electron microscopic observations on synovial membrane. Anat. Rec. 132, 525–539 (1958).
pubmed: 13650183 doi: 10.1002/ar.1091320402
Barland, P., Novikoff, A. B. & Hamerman, D. Electron microscopy of the human synovial membrane. J. Cell Biol. 14, 207–220 (1962).
pubmed: 13865038 pmcid: 2106097 doi: 10.1083/jcb.14.2.207
Castor, C. W. The microscopic structure of normal human synovial tissue. Arthritis Rheum. 3, 140–151 (1960).
pubmed: 13808324 doi: 10.1002/art.1780030205
Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).
pubmed: 31391580 pmcid: 6805223 doi: 10.1038/s41586-019-1471-1
Buckley, C. D. Macrophages form a protective cellular barrier in joints. Nature 572, 590–592 (2019).
pubmed: 31444488 doi: 10.1038/d41586-019-02340-x
Jay, G. D., Britt, D. E. & Cha, C. J. Lubricin is a product of megakaryocyte stimulating factor gene expression by human synovial fibroblasts. J. Rheumatol. 27, 594–600 (2000).
pubmed: 10743795
Jay, G. D. & Waller, K. A. The biology of lubricin: near frictionless joint motion. Matrix Biol. 39, 17–24 (2014).
pubmed: 25172828 doi: 10.1016/j.matbio.2014.08.008
Swann, D. A., Silver, F. H., Slayter, H. S., Stafford, W. & Shore, E. The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial fluids. Biochem. J. 225, 195–201 (1985).
pubmed: 3977823 pmcid: 1144569 doi: 10.1042/bj2250195
Firestein, G. S. Etiology and pathogenesis of rheumatoid arthritis, In Kelley and Firestein’s Textbook of Rheumatology 10th edn, (eds Firestein, G. S. et al.) 1115–1166 (Elsevier, Philadelphia, 2017)
Sabeh, F., Fox, D. & Weiss, S. J. Membrane-type I matrix metalloproteinase-dependent regulation of rheumatoid arthritis synoviocyte function. J. Immunol. 184, 6396–6406 (2010).
pubmed: 20483788 doi: 10.4049/jimmunol.0904068
Noss, E. H. & Brenner, M. B. The role and therapeutic implications of fibroblast-like synoviocytes in inflammation and cartilage erosion in rheumatoid arthritis. Immunol. Rev. 223, 252–270 (2008).
pubmed: 18613841 doi: 10.1111/j.1600-065X.2008.00648.x
Muller-Ladner, U., Pap, T., Gay, R. E., Neidhart, M. & Gay, S. Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 1, 102–110 (2005).
pubmed: 16932639 doi: 10.1038/ncprheum0047
Burrage, P. S., Mix, K. S. & Brinckerhoff, C. E. Matrix metalloproteinases: role in arthritis. Front. Biosci. 11, 529–543 (2006).
pubmed: 16146751 doi: 10.2741/1817
Lafyatis, R. et al. Anchorage-independent growth of synoviocytes from arthritic and normal joints. Stimulation by exogenous platelet-derived growth factor and inhibition by transforming growth factor-β and retinoids. J. Clin. Invest. 83, 1267–1276 (1989).
pubmed: 2784799 pmcid: 303817 doi: 10.1172/JCI114011
Korb, A., Pavenstadt, H. & Pap, T. Cell death in rheumatoid arthritis. Apoptosis 14, 447–454 (2009).
pubmed: 19199037 doi: 10.1007/s10495-009-0317-y
Kato, M., Ospelt, C., Gay, R. E., Gay, S. & Klein, K. Dual role of autophagy in stress-induced cell death in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol. 66, 40–48 (2014).
pubmed: 24449574 doi: 10.1002/art.38190
Shin, Y. J. et al. Autophagy induction and CHOP under-expression promotes survival of fibroblasts from rheumatoid arthritis patients under endoplasmic reticulum stress. Arthritis Res. Ther. 12, R19 (2010).
pubmed: 20122151 pmcid: 2875648 doi: 10.1186/ar2921
Steenvoorden, M. M. et al. Transition of healthy to diseased synovial tissue in rheumatoid arthritis is associated with gain of mesenchymal/fibrotic characteristics. Arthritis Res. Ther. 8, R165 (2006).
pubmed: 17076892 pmcid: 1794508 doi: 10.1186/ar2073
Marinova-Mutafchieva, L., Williams, R. O., Funa, K., Maini, R. N. & Zvaifler, N. J. Inflammation is preceded by tumor necrosis factor-dependent infiltration of mesenchymal cells in experimental arthritis. Arthritis Rheum. 46, 507–513 (2002).
pubmed: 11840454 doi: 10.1002/art.10126
Corr, M. & Zvaifler, N. J. Mesenchymal precursor cells. Ann. Rheum. Dis. 61, 3–5 (2002).
pubmed: 11779748 pmcid: 1753867 doi: 10.1136/ard.61.1.3
Lefevre, S. et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 15, 1414–1420 (2009).
pubmed: 19898488 pmcid: 3678354 doi: 10.1038/nm.2050
Tolboom, T. C. et al. Invasive properties of fibroblast-like synoviocytes: correlation with growth characteristics and expression of MMP-1, MMP-3, and MMP-10. Ann. Rheum. Dis. 61, 975–980 (2002).
pubmed: 12379519 pmcid: 1753950 doi: 10.1136/ard.61.11.975
Miller, M. C. et al. Membrane type 1 matrix metalloproteinase is a crucial promoter of synovial invasion in human rheumatoid arthritis. Arthritis Rheum. 60, 686–697 (2009).
pubmed: 19248098 pmcid: 2819053 doi: 10.1002/art.24331
Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 4, 18001 (2018).
pubmed: 29417936 doi: 10.1038/nrdp.2018.1
Izquierdo, E. et al. Synovial fibroblast hyperplasia in rheumatoid arthritis: clinicopathologic correlations and partial reversal by anti-tumor necrosis factor therapy. Arthritis Rheum. 63, 2575–2583 (2011).
pubmed: 21547893 doi: 10.1002/art.30433
Redlich, K. & Smolen, J. S. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat. Rev. Drug Discov. 11, 234–250 (2012).
pubmed: 22378270 doi: 10.1038/nrd3669
Armaka, M., Ospelt, C., Pasparakis, M. & Kollias, G. The p55TNFR-IKK2-Ripk3 axis orchestrates arthritis by regulating death and inflammatory pathways in synovial fibroblasts. Nat. Commun. 9, 618 (2018).
pubmed: 29434332 pmcid: 5809454 doi: 10.1038/s41467-018-02935-4
Armaka, M. et al. Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J. Exp. Med. 205, 331–337 (2008).
pubmed: 18250193 pmcid: 2271010 doi: 10.1084/jem.20070906
Ahn, J. K. et al. GC/TOF-MS-based metabolomic profiling in cultured fibroblast-like synoviocytes from rheumatoid arthritis. Joint Bone Spine 83, 707–713 (2016).
pubmed: 27133762 doi: 10.1016/j.jbspin.2015.11.009
Epstein, T., Gatenby, R. A. & Brown, J. S. The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. PLoS One 12, e0185085 (2017).
pubmed: 28922380 pmcid: 5602667 doi: 10.1371/journal.pone.0185085
Hua, S. & Dias, T. H. Hypoxia-inducible factor (HIF) as a target for novel therapies in rheumatoid arthritis. Front. Pharmacol. 7, 184 (2016).
pubmed: 27445820 pmcid: 4921475 doi: 10.3389/fphar.2016.00184
Bustamante, M. F. et al. Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. Ann. Rheum. Dis. 77, 1636–1643 (2018).
pubmed: 30061164 pmcid: 6328432 doi: 10.1136/annrheumdis-2018-213103
Garcia-Carbonell, R. et al. Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol. 68, 1614–1626 (2016).
pubmed: 26815411 pmcid: 4963240 doi: 10.1002/art.39608
de Oliveira, P. G., Farinon, M., Sanchez-Lopez, E., Miyamoto, S. & Guma, M. Fibroblast-like synoviocytes glucose metabolism as a therapeutic target in rheumatoid arthritis. Front. Immunol. 10, 1743 (2019).
pubmed: 31428089 pmcid: 6688519 doi: 10.3389/fimmu.2019.01743
Bustamante, M. F., Garcia-Carbonell, R., Whisenant, K. D. & Guma, M. Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res. Ther. 19, 110 (2017).
pubmed: 28569176 pmcid: 5452638 doi: 10.1186/s13075-017-1303-3
Fox, D. A., Gizinski, A., Morgan, R. & Lundy, S. K. Cell-cell interactions in rheumatoid arthritis synovium. Rheum. Dis. Clin. North Am. 36, 311–323 (2010).
pubmed: 20510236 pmcid: 2879397 doi: 10.1016/j.rdc.2010.02.004
Szekanecz, Z., Besenyei, T., Paragh, G. & Koch, A. E. New insights in synovial angiogenesis. Joint Bone Spine 77, 13–19 (2010).
pubmed: 20022538 doi: 10.1016/j.jbspin.2009.05.011
Buckley, C. D. Why does chronic inflammation persist: an unexpected role for fibroblasts. Immunol. Lett. 138, 12–14 (2011).
pubmed: 21333681 pmcid: 3110265 doi: 10.1016/j.imlet.2011.02.010
Buckley, C. D. et al. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 22, 199–204 (2001).
pubmed: 11274925 doi: 10.1016/S1471-4906(01)01863-4
Filer, A. et al. Differential survival of leukocyte subsets mediated by synovial, bone marrow, and skin fibroblasts: site-specific versus activation-dependent survival of T cells and neutrophils. Arthritis Rheum. 54, 2096–2108 (2006).
pubmed: 16802344 pmcid: 3119431 doi: 10.1002/art.21930
Reparon-Schuijt, C. C. et al. Regulation of synovial B cell survival in rheumatoid arthritis by vascular cell adhesion molecule 1 (CD106) expressed on fibroblast-like synoviocytes. Arthritis Rheum. 43, 1115–1121 (2000).
pubmed: 10817566 doi: 10.1002/1529-0131(200005)43:5<1115::AID-ANR22>3.0.CO;2-A
Burger, J. A., Zvaifler, N. J., Tsukada, N., Firestein, G. S. & Kipps, T. J. Fibroblast-like synoviocytes support B-cell pseudoemperipolesis via a stromal cell-derived factor-1- and CD106 (VCAM-1)-dependent mechanism. J. Clin. Invest. 107, 305–315 (2001).
pubmed: 11160154 pmcid: 199194 doi: 10.1172/JCI11092
Bombardieri, M. et al. A BAFF/APRIL-dependent TLR3-stimulated pathway enhances the capacity of rheumatoid synovial fibroblasts to induce AID expression and Ig class-switching in B cells. Ann. Rheum. Dis. 70, 1857–1865 (2011).
pubmed: 21798884 doi: 10.1136/ard.2011.150219
de Brito Rocha, S., Baldo, D. C. & Andrade, L. E. C. Clinical and pathophysiologic relevance of autoantibodies in rheumatoid arthritis. Adv. Rheumatol. 59, 2 (2019).
pubmed: 30657101 doi: 10.1186/s42358-018-0042-8
van Venrooij, W. J., van Beers, J. J. & Pruijn, G. J. Anti-CCP antibody, a marker for the early detection of rheumatoid arthritis. Ann. N. Y. Acad. Sci. 1143, 268–285 (2008).
pubmed: 19076355 doi: 10.1196/annals.1443.013
Take, Y. et al. Specifically modified osteopontin in rheumatoid arthritis fibroblast-like synoviocytes supports interaction with B cells and enhances production of interleukin-6. Arthritis Rheum. 60, 3591–3601 (2009).
pubmed: 19950274 doi: 10.1002/art.25020
Carmona-Rivera, C. et al. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci. Immunol. 2, eaag3358 (2017).
pubmed: 28649674 pmcid: 5479641 doi: 10.1126/sciimmunol.aag3358
Tran, C. N. et al. Presentation of arthritogenic peptide to antigen-specific T cells by fibroblast-like synoviocytes. Arthritis Rheum. 56, 1497–1506 (2007).
pubmed: 17469112 doi: 10.1002/art.22573
Yamamura, Y. et al. Effector function of resting T cells: activation of synovial fibroblasts. J. Immunol. 166, 2270–2275 (2001).
pubmed: 11160281 doi: 10.4049/jimmunol.166.4.2270
Chabaud, M. et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 42, 963–970 (1999).
pubmed: 10323452 doi: 10.1002/1529-0131(199905)42:5<963::AID-ANR15>3.0.CO;2-E
Tran, C. N. et al. Molecular interactions between T cells and fibroblast-like synoviocytes: role of membrane tumor necrosis factor-α on cytokine-activated T cells. Am. J. Pathol. 171, 1588–1598 (2007).
pubmed: 17823284 pmcid: 2043519 doi: 10.2353/ajpath.2007.070004
Naylor, A. J., Filer, A. & Buckley, C. D. The role of stromal cells in the persistence of chronic inflammation. Clin. Exp. Immunol. 171, 30–35 (2013).
pubmed: 23199320 pmcid: 3530092 doi: 10.1111/j.1365-2249.2012.04634.x
Lee, A. et al. Tumor necrosis factor α induces sustained signaling and a prolonged and unremitting inflammatory response in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 65, 928–938 (2013).
pubmed: 23335080 pmcid: 3618592 doi: 10.1002/art.37853
Migita, K. et al. TNF-α-induced miR-155 regulates IL-6 signaling in rheumatoid synovial fibroblasts. BMC Res. Notes 10, 403 (2017).
pubmed: 28807007 pmcid: 5556669 doi: 10.1186/s13104-017-2715-5
Jiao, Z. et al. Notch signaling mediates TNF-α-induced IL-6 production in cultured fibroblast-like synoviocytes from rheumatoid arthritis. Clin. Dev. Immunol. 2012, 350209 (2012).
pubmed: 22190977 doi: 10.1155/2012/350209
Perlman, H. et al. IL-6 and matrix metalloproteinase-1 are regulated by the cyclin-dependent kinase inhibitor p21 in synovial fibroblasts. J. Immunol. 170, 838–845 (2003).
pubmed: 12517948 doi: 10.4049/jimmunol.170.2.838
Loupasakis, K. et al. Tumor Necrosis Factor dynamically regulates the mRNA stabilome in rheumatoid arthritis fibroblast-like synoviocytes. PLoS One 12, e0179762 (2017).
pubmed: 28708839 pmcid: 5510804 doi: 10.1371/journal.pone.0179762
Donlin, L. T., Jayatilleke, A., Giannopoulou, E. G., Kalliolias, G. D. & Ivashkiv, L. B. Modulation of TNF-induced macrophage polarization by synovial fibroblasts. J. Immunol. 193, 2373–2383 (2014).
pubmed: 25057003 pmcid: 4135020 doi: 10.4049/jimmunol.1400486
Kuo, D. et al. HBEGF
pubmed: 31068444 pmcid: 6726376 doi: 10.1126/scitranslmed.aau8587
Jones, D. H., Kong, Y. Y. & Penninger, J. M. Role of RANKL and RANK in bone loss and arthritis. Ann. Rheum. Dis. 61 (Suppl. 2), ii32–ii39 (2002).
pubmed: 12379618 pmcid: 1766717 doi: 10.1136/ard.61.suppl_2.ii32
Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13, 156–163 (2007).
pubmed: 17237793 doi: 10.1038/nm1538
Klein, D. The tumor vascular endothelium as decision maker in cancer therapy. Front. Oncol. 2, eaag3358 (2018).
Filer, A. et al. Identification of a transitional fibroblast function in very early rheumatoid arthritis. Ann. Rheum. Dis. 76, 2105–2112 (2017).
pubmed: 28847766 pmcid: 5705853 doi: 10.1136/annrheumdis-2017-211286
Lewis, M. J. et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 28, 2455–2470.e5 (2019).
pubmed: 31461658 pmcid: 6718830 doi: 10.1016/j.celrep.2019.07.091
Humby, F. et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann. Rheum. Dis. 78, 761–772 (2019).
pubmed: 30878974 pmcid: 6579551 doi: 10.1136/annrheumdis-2018-214539
Ekwall, A. K. et al. The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid arthritis. Arthritis Res. Ther. 13, R40 (2011).
pubmed: 21385358 pmcid: 3132020 doi: 10.1186/ar3274
Kiener, H. P. et al. Synovial fibroblasts self-direct multicellular lining architecture and synthetic function in three-dimensional organ culture. Arthritis Rheum. 62, 742–752 (2010).
pubmed: 20131230 doi: 10.1002/art.27285
Lee, D. M. et al. Cadherin-11 in synovial lining formation and pathology in arthritis. Science 315, 1006–1010 (2007).
pubmed: 17255475 doi: 10.1126/science.1137306
Chang, S. K., Gu, Z. & Brenner, M. B. Fibroblast-like synoviocytes in inflammatory arthritis pathology: the emerging role of cadherin-11. Immunol. Rev. 233, 256–266 (2010).
pubmed: 20193004 doi: 10.1111/j.0105-2896.2009.00854.x
Noss, E. H. et al. Evidence for cadherin-11 cleavage in the synovium and partial characterization of its mechanism. Arthritis Res. Ther. 17, 126 (2015).
pubmed: 25975695 pmcid: 4449585 doi: 10.1186/s13075-015-0647-9
Vandooren, B. et al. Tumor necrosis factor α drives cadherin 11 expression in rheumatoid inflammation. Arthritis Rheum. 58, 3051–3062 (2008).
pubmed: 18821672 doi: 10.1002/art.23886
Wicki, A. et al. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9, 261–272 (2006).
pubmed: 16616332 doi: 10.1016/j.ccr.2006.03.010
Martín-Villar, E. et al. Characterization of human PA2.26 antigen (T1α-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int. J. Cancer 113, 899–910 (2005).
pubmed: 15515019 doi: 10.1002/ijc.20656
Donlin, L. T. et al. Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue. Arthritis Res. Ther. 20, 139 (2018).
pubmed: 29996944 pmcid: 6042350 doi: 10.1186/s13075-018-1631-y
Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).
pubmed: 29476097 pmcid: 5824882 doi: 10.1038/s41467-018-02892-y
Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 9, 791 (2018).
pubmed: 29476078 pmcid: 5824814 doi: 10.1038/s41467-017-02659-x
Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).
pubmed: 31061532 pmcid: 6602051 doi: 10.1038/s41590-019-0378-1
Croft, A. P. et al. Rheumatoid synovial fibroblasts differentiate into distinct subsets in the presence of cytokines and cartilage. Arthritis Res. Ther. 18, 270 (2016).
pubmed: 27863512 pmcid: 5116193 doi: 10.1186/s13075-016-1156-1
Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).
pubmed: 31142839 pmcid: 6690841 doi: 10.1038/s41586-019-1263-7
Tak, P. P., Zvaifler, N. J., Green, D. R. & Firestein, G. S. Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol. Today 21, 78–82 (2000).
pubmed: 10652465 doi: 10.1016/S0167-5699(99)01552-2
Lane, D. P. Cancer. p53, guardian of the genome. Nature 358, 15–16 (1992).
pubmed: 1614522 doi: 10.1038/358015a0
Firestein, G. S. et al. Apoptosis in rheumatoid arthritis: p53 overexpression in rheumatoid arthritis synovium. Am. J. Pathol. 149, 2143–2151 (1996).
pubmed: 8952546 pmcid: 1865342
Yamanishi, Y. et al. p53 tumor suppressor gene mutations in fibroblast-like synoviocytes from erosion synovium and non-erosion synovium in rheumatoid arthritis. Arthritis Res. Ther. 7, R12–R18 (2005).
pubmed: 15642132 doi: 10.1186/ar1448
Horn, H. F. & Vousden, K. H. Coping with stress: multiple ways to activate p53. Oncogene 26, 1306–1316 (2007).
pubmed: 17322916 doi: 10.1038/sj.onc.1210263
Theoret, M. R. et al. Relationship of p53 overexpression on cancers and recognition by anti-p53 T cell receptor-transduced T cells. Hum. Gene Ther. 19, 1219–1232 (2008).
pubmed: 19848582 pmcid: 2889139 doi: 10.1089/hum.2008.083
Han, Z., Boyle, D. L., Shi, Y., Green, D. R. & Firestein, G. S. Dominant-negative p53 mutations in rheumatoid arthritis. Arthritis Rheum. 42, 1088–1092 (1999).
pubmed: 10366100 doi: 10.1002/1529-0131(199906)42:6<1088::AID-ANR4>3.0.CO;2-E
Pap, T., Aupperle, K. R., Gay, S., Firestein, G. S. & Gay, R. E. Invasiveness of synovial fibroblasts is regulated by p53 in the SCID mouse in vivo model of cartilage invasion. Arthritis Rheum. 44, 676–681 (2001).
pubmed: 11263783 doi: 10.1002/1529-0131(200103)44:3<676::AID-ANR117>3.0.CO;2-6
Weisbart, R. H. et al. BRAF drives synovial fibroblast transformation in rheumatoid arthritis. J. Biol. Chem. 285, 34299–34303 (2010).
pubmed: 20843808 pmcid: 2966042 doi: 10.1074/jbc.C110.168195
Bang, H. et al. Mutation and citrullination modifies vimentin to a novel autoantigen for rheumatoid arthritis. Arthritis Rheum. 56, 2503–2511 (2007).
pubmed: 17665451 doi: 10.1002/art.22817
Da Sylva, T. R., Connor, A., Mburu, Y., Keystone, E. & Wu, G. E. Somatic mutations in the mitochondria of rheumatoid arthritis synoviocytes. Arthritis Res. Ther. 7, R844–R851 (2005).
pubmed: 15987486 pmcid: 1175034 doi: 10.1186/ar1752
Maximo, V., Soares, P., Lima, J., Cameselle-Teijeiro, J. & Sobrinho-Simoes, M. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hurthle cell tumors. Am. J. Pathol. 160, 1857–1865 (2002).
pubmed: 12000737 pmcid: 1850872 doi: 10.1016/S0002-9440(10)61132-7
Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).
pubmed: 24390342 doi: 10.1038/nature12873
Viatte, S., Plant, D. & Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 141–153 (2013).
pubmed: 23381558 pmcid: 3694322 doi: 10.1038/nrrheum.2012.237
Kim, K., Bang, S. Y., Lee, H. S. & Bae, S. C. Update on the genetic architecture of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 13–24 (2017).
pubmed: 27811914 doi: 10.1038/nrrheum.2016.176
Maeshima, K. et al. Abnormal PTPN11 enhancer methylation promotes rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and joint inflammation. JCI Insight https://doi.org/10.1172/jci.insight.86580 (2016).
doi: 10.1172/jci.insight.86580 pubmed: 27275015 pmcid: 4889026
Matsuda, S. et al. Regulation of the cell cycle and inflammatory arthritis by the transcription cofactor. J. Immunol. 199, 2316–2322 (2017).
pubmed: 28807995 pmcid: 5605444 doi: 10.4049/jimmunol.1700719
Aho, K., Koskenvuo, M., Tuominen, J. & Kaprio, J. Occurrence of rheumatoid arthritis in a nationwide series of twins. J. Rheumatol. 13, 899–902 (1986).
pubmed: 3820198
MacGregor, A. J. et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 43, 30–37 (2000).
pubmed: 10643697 doi: 10.1002/1529-0131(200001)43:1<30::AID-ANR5>3.0.CO;2-B
Svendsen, A. J. et al. On the origin of rheumatoid arthritis: the impact of environment and genes-a population based twin study. PLoS One 8, e57304 (2013).
pubmed: 23468964 pmcid: 3585362 doi: 10.1371/journal.pone.0057304
Doody, K. M., Bottini, N. & Firestein, G. S. Epigenetic alterations in rheumatoid arthritis fibroblast-like synoviocytes. Epigenomics 9, 479–492 (2017).
pubmed: 28322585 pmcid: 5549652 doi: 10.2217/epi-2016-0151
Jablonka, E. & Raz, G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 84, 131–176 (2009).
pubmed: 19606595 doi: 10.1086/598822
Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).
pubmed: 27346641 doi: 10.1038/nrg.2016.59
Karouzakis, E., Gay, R. E., Gay, S. & Neidhart, M. Epigenetic deregulation in rheumatoid arthritis. Adv. Exp. Med. Biol. 711, 137–149 (2011).
pubmed: 21627047 doi: 10.1007/978-1-4419-8216-2_10
Schubeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).
pubmed: 25592537 doi: 10.1038/nature14192
Robertson, K. D. DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610 (2005).
pubmed: 16136652 doi: 10.1038/nrg1655
Jin, B., Li, Y. & Robertson, K. D. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2, 607–617 (2011).
pubmed: 21941617 pmcid: 3174260 doi: 10.1177/1947601910393957
Kulis, M. & Esteller, M. DNA methylation and cancer. Adv. Genet. 70, 27–56 (2010).
pubmed: 20920744 doi: 10.1016/B978-0-12-380866-0.60002-2
Karouzakis, E., Gay, R. E., Michel, B. A., Gay, S. & Neidhart, M. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 60, 3613–3622 (2009).
pubmed: 19950268 doi: 10.1002/art.25018
Takami, N. et al. Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum. 54, 779–787 (2006).
pubmed: 16508942 doi: 10.1002/art.21637
Nakano, K., Whitaker, J. W., Boyle, D. L., Wang, W. & Firestein, G. S. DNA methylome signature in rheumatoid arthritis. Ann. Rheum. Dis. 72, 110–117 (2013).
pubmed: 22736089 doi: 10.1136/annrheumdis-2012-201526
Nakano, K., Boyle, D. L. & Firestein, G. S. Regulation of DNA methylation in rheumatoid arthritis synoviocytes. J. Immunol. 190, 1297–1303 (2013).
pubmed: 23277489 doi: 10.4049/jimmunol.1202572
Whitaker, J. W. et al. An imprinted rheumatoid arthritis methylome signature reflects pathogenic phenotype. Genome Med. 5, 40 (2013).
pubmed: 23631487 pmcid: 3706831 doi: 10.1186/gm444
de la Rica, L. et al. Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J. Autoimmun. 41, 6–16 (2013).
pubmed: 23306098 doi: 10.1016/j.jaut.2012.12.005
Rhead, B. et al. Rheumatoid arthritis naive T cells share hypermethylation sites with synoviocytes. Arthritis Rheumatol. 69, 550–559 (2017).
pubmed: 27723282 pmcid: 5328845 doi: 10.1002/art.39952
Ai, R. et al. Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat. Commun. 9, 1921 (2018).
pubmed: 29765031 pmcid: 5953939 doi: 10.1038/s41467-018-04310-9
Karouzakis, E. et al. Analysis of early changes in DNA methylation in synovial fibroblasts of RA patients before diagnosis. Sci. Rep. 8, 7370 (2018).
pubmed: 29743579 pmcid: 5943364 doi: 10.1038/s41598-018-24240-2
Firestein, G. S. Pathogenesis of rheumatoid arthritis: the intersection of genetics and epigenetics. Trans. Am. Clin. Climatol. Assoc. 129, 171–182 (2018).
pubmed: 30166712 pmcid: 6116585
Hammond, S. M. An overview of microRNAs. Adv. Drug Deliv. Rev. 87, 3–14 (2015).
pubmed: 25979468 pmcid: 4504744 doi: 10.1016/j.addr.2015.05.001
Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).
pubmed: 25363779 doi: 10.1038/nature13835
Klein, K. & Gay, S. Epigenetics in rheumatoid arthritis. Curr. Opin. Rheumatol. 27, 76–82 (2015).
pubmed: 25415526 doi: 10.1097/BOR.0000000000000128
Niederer, F. et al. Down-regulation of microRNA-34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum. 64, 1771–1779 (2012).
pubmed: 22161761 doi: 10.1002/art.34334
Stanczyk, J. et al. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum. 63, 373–381 (2011).
pubmed: 21279994 pmcid: 3116142 doi: 10.1002/art.30115
Stanczyk, J. et al. Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 58, 1001–1009 (2008).
pubmed: 18383392 doi: 10.1002/art.23386
Kurowska-Stolarska, M. et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc. Natl Acad. Sci. USA 108, 11193–11198 (2011).
pubmed: 21690378 doi: 10.1073/pnas.1019536108
Bluml, S. et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum. 63, 1281–1288 (2011).
pubmed: 21321928 doi: 10.1002/art.30281
Nakamachi, Y. et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum. 60, 1294–1304 (2009).
pubmed: 19404929 doi: 10.1002/art.24475
Pandis, I. et al. Identification of microRNA-221/222 and microRNA-323-3p association with rheumatoid arthritis via predictions using the human tumour necrosis factor transgenic mouse model. Ann. Rheum. Dis. 71, 1716–1723 (2012).
pubmed: 22562984 doi: 10.1136/annrheumdis-2011-200803
Araki, Y. et al. Histone methylation and STAT-3 differentially regulate interleukin-6-induced matrix metalloproteinase gene activation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol. 68, 1111–1123 (2016).
pubmed: 26713842
Dong, X. & Weng, Z. The correlation between histone modifications and gene expression. Epigenomics 5, 113–116 (2013).
pubmed: 23566087 pmcid: 4230708 doi: 10.2217/epi.13.13
Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010).
pubmed: 21068722 pmcid: 5415086 doi: 10.1038/nature09589
Angiolilli, C., Baeten, D. L., Radstake, T. R. & Reedquist, K. A. The acetyl code in rheumatoid arthritis and other rheumatic diseases. Epigenomics 9, 447–461 (2017).
pubmed: 28102705 doi: 10.2217/epi-2016-0136
Horiuchi, M. et al. Expression and function of histone deacetylases in rheumatoid arthritis synovial fibroblasts. J. Rheumatol. 36, 1580–1589 (2009).
pubmed: 19531758 doi: 10.3899/jrheum.081115
Niederer, F. et al. SIRT1 overexpression in the rheumatoid arthritis synovium contributes to proinflammatory cytokine production and apoptosis resistance. Ann. Rheum. Dis. 70, 1866–1873 (2011).
pubmed: 21742641 doi: 10.1136/ard.2010.148957
Woo, S. J. et al. Myeloid deletion of SIRT1 suppresses collagen-induced arthritis in mice by modulating dendritic cell maturation. Exp. Mol. Med. 48, e221 (2016).
pubmed: 26987484 pmcid: 4892877 doi: 10.1038/emm.2015.124
Sohn, C. et al. Prolonged tumor necrosis factor α primes fibroblast-like synoviocytes in a gene-specific manner by altering chromatin. Arthritis Rheumatol. 67, 86–95 (2015).
pubmed: 25199798 pmcid: 4455921 doi: 10.1002/art.38871
Kawabata, T. et al. Increased activity and expression of histone deacetylase 1 in relation to tumor necrosis factor-α in synovial tissue of rheumatoid arthritis. Arthritis Res. Ther. 12, R133 (2010).
pubmed: 20609223 pmcid: 2945023 doi: 10.1186/ar3071
Angiolilli, C. et al. Inflammatory cytokines epigenetically regulate rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing HDAC5 expression. Ann. Rheum. Dis. 75, 430–438 (2016).
pubmed: 25452308 doi: 10.1136/annrheumdis-2014-205635
Whitaker, J. W. et al. Integrative omics analysis of rheumatoid arthritis identifies non-obvious therapeutic targets. PLoS One 10, e0124254 (2015).
pubmed: 25901943 pmcid: 4406750 doi: 10.1371/journal.pone.0124254
Hammaker, D. et al. LBH gene transcription regulation by the interplay of an enhancer risk allele and DNA methylation in rheumatoid arthritis. Arthritis Rheumatol. 68, 2637–2645 (2016).
pubmed: 27159840 pmcid: 5083131 doi: 10.1002/art.39746
Ekwall, A. K. et al. The rheumatoid arthritis risk gene LBH regulates growth in fibroblast-like synoviocytes. Arthritis Rheumatol. 67, 1193–1202 (2015).
pubmed: 25707478 pmcid: 4490933 doi: 10.1002/art.39060
Matsuda, S. et al. Regulation of the cell cycle and inflammatory arthritis by the transcription cofactor LBH gene. J. Immunol. 199, 2316–2322 (2017).
pubmed: 28807995 pmcid: 5605444 doi: 10.4049/jimmunol.1700719
Stanford, S. M. et al. Protein tyrosine phosphatase expression profile of rheumatoid arthritis fibroblast-like synoviocytes: a novel role of SH2 domain-containing phosphatase 2 as a modulator of invasion and survival. Arthritis Rheum. 65, 1171–1180 (2013).
pubmed: 23335101 pmcid: 3636201 doi: 10.1002/art.37872
Tolboom, T. C. et al. Invasiveness of fibroblast-like synoviocytes is an individual patient characteristic associated with the rate of joint destruction in patients with rheumatoid arthritis. Arthritis Rheum. 52, 1999–2002 (2005).
pubmed: 15986342 doi: 10.1002/art.21118
Laragione, T., Brenner, M., Mello, A., Symons, M. & Gulko, P. S. The arthritis severity locus Cia5d is a novel genetic regulator of the invasive properties of synovial fibroblasts. Arthritis Rheum. 58, 2296–2306 (2008).
pubmed: 18668563 pmcid: 2714698 doi: 10.1002/art.23610
Laragione, T. et al. Huntingtin-interacting protein 1 (HIP1) regulates arthritis severity and synovial fibroblast invasiveness by altering PDGFR and Rac1 signalling. Ann. Rheum. Dis. 11, 1627–1635 (2018).
doi: 10.1136/annrheumdis-2018-213498
Kraan, M. C. et al. Comparison of synovial tissues from the knee joints and the small joints of rheumatoid arthritis patients: implications for pathogenesis and evaluation of treatment. Arthritis Rheum. 46, 2034–2038 (2002).
pubmed: 12209505 doi: 10.1002/art.10556
Ai, R. et al. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun. 7, 11849 (2016).
pubmed: 27282753 pmcid: 4906396 doi: 10.1038/ncomms11849
Frank-Bertoncelj, M. et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun. 8, 14852 (2017).
pubmed: 28332497 pmcid: 5376654 doi: 10.1038/ncomms14852
Wang, P. et al. Cyclic mechanical stretch downregulates IL-1β-induced COX-2 expression and PGE(2) production in rheumatoid arthritis fibroblast-like synoviocytes. Connect. Tissue Res. 52, 190–197 (2011).
pubmed: 20887233 doi: 10.3109/03008207.2010.508853
Hammaker, D. et al. Joint location-specific JAK-STAT signaling in rheumatoid arthritis fibroblast-like synoviocytes. ACR Open Rheumatol. 1, 640–648 (2019).
pubmed: 31872186 pmcid: 6917316 doi: 10.1002/acr2.11093
Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).
pubmed: 7913880 doi: 10.1016/0092-8674(94)90290-9
Zakany, J. & Duboule, D. The role of Hox genes during vertebrate limb development. Curr. Opin. Genet. Dev. 17, 359–366 (2007).
pubmed: 17644373 doi: 10.1016/j.gde.2007.05.011
Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).
pubmed: 21423168 pmcid: 3670758 doi: 10.1038/nature09819
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).
pubmed: 10647931 doi: 10.1016/S0092-8674(00)81683-9
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
pubmed: 21376230 pmcid: 21376230 doi: 10.1016/j.cell.2011.02.013
Neumann, E., Lefevre, S., Zimmermann, B., Gay, S. & Muller-Ladner, U. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol. Med. 16, 458–468 (2010).
pubmed: 20739221 doi: 10.1016/j.molmed.2010.07.004
Sanchez-Lopez, E., Cheng, A. & Guma, M. Can metabolic pathways be therapeutic targets in rheumatoid arthritis? J. Clin. Med. 8, E753 (2019).
pubmed: 31137815 doi: 10.3390/jcm8050753
McGarry, T. et al. JAK/STAT blockade alters synovial bioenergetics, mitochondrial function, and proinflammatory mediators in rheumatoid arthritis. Arthritis Rheumatol. 70, 1959–1970 (2018).
pubmed: 29790294 doi: 10.1002/art.40569
Finch, R. et al. OP0224 results of a phase 2 study of RG6125, an anti-cadherin-11 monoclonal antibody, in rheumatoid arthritis patients with an inadequate response to anti-TNFα therapy. Ann. Rheum. Dis. 78, 189 (2019).
Doody, K. M. et al. Targeting phosphatase-dependent proteoglycan switch for rheumatoid arthritis therapy. Sci. Transl. Med. 7, 288ra276 (2015).
doi: 10.1126/scitranslmed.aaa4616
Stanford, S. M. et al. TGFβ responsive tyrosine phosphatase promotes rheumatoid synovial fibroblast invasiveness. Ann. Rheum. Dis. 75, 295–302 (2016).
pubmed: 25378349 doi: 10.1136/annrheumdis-2014-205790
Stanford, S. M. et al. Receptor protein tyrosine phosphatase α-mediated enhancement of rheumatoid synovial fibroblast signaling and promotion of arthritis in mice. Arthritis Rheumatol. 68, 359–369 (2016).
pubmed: 26414708 pmcid: 4770259 doi: 10.1002/art.39442
Stanford, S. M. & Bottini, N. Targeting tyrosine phosphatases: time to end the stigma. Trends Pharmacol. Sci. 38, 524–540 (2017).
pubmed: 28412041 pmcid: 5494996 doi: 10.1016/j.tips.2017.03.004
Kim, C. et al. The kinase p38α serves cell type-specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression. Nat. Immunol. 9, 1019–1027 (2008).
pubmed: 18677317 pmcid: 2587092 doi: 10.1038/ni.1640
Ananieva, O. et al. The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nat. Immunol. 9, 1028–1036 (2008).
pubmed: 18690222 doi: 10.1038/ni.1644
Guma, M. et al. Antiinflammatory functions of p38 in mouse models of rheumatoid arthritis: advantages of targeting upstream kinases MKK-3 or MKK-6. Arthritis Rheum. 64, 2887–2895 (2012).
pubmed: 22488549 pmcid: 3397277 doi: 10.1002/art.34489
Yoshizawa T. et al. Role of MAPK kinase 6 in arthritis: distinct mechanism of action in inflammation and cytokine expression. J. Immunol. 183 1360–1367 (2009).
pubmed: 19561096 doi: 10.4049/jimmunol.0900483
Nygaard, G. et al. Regulation and function of apoptosis signal-regulating kinase 1 in rheumatoid arthritis. Biochem. Pharmacol. 151, 282–290 (2018).
pubmed: 29408488 doi: 10.1016/j.bcp.2018.01.041
Mnich, S. J. et al. Critical role for apoptosis signal-regulating kinase 1 in the development of inflammatory K/BxN serum-induced arthritis. Int. Immunopharmacol. 10, 1170–1176 (2010).
pubmed: 20609399 doi: 10.1016/j.intimp.2010.06.023
Cha, H. S., Rosengren, S., Boyle, D. L. & Firestein, G. S. PUMA regulation and proapoptotic effects in fibroblast-like synoviocytes. Arthritis Rheum. 54, 587–592 (2006).
pubmed: 16447235 doi: 10.1002/art.21631
Hong, S. S. et al. PUMA gene delivery to synoviocytes reduces inflammation and degeneration of arthritic joints. Nat. Commun. 8, 146 (2017).
pubmed: 28747638 pmcid: 5529536 doi: 10.1038/s41467-017-00142-1
Evans, C. H. et al. Gene transfer to human joints: progress toward a gene therapy of arthritis. Proc. Natl Acad. Sci. USA 102, 8698–8703 (2005).
pubmed: 15939878 doi: 10.1073/pnas.0502854102
Zhu, S. et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat. Med. 18, 1077–1086 (2012).
pubmed: 22660635 doi: 10.1038/nm.2815
Hammaker, D. & Firestein, G. S. Epigenetics of inflammatory arthritis. Curr. Opin. Rheumatol. 30, 188–196 (2018).
pubmed: 29194108 pmcid: 5804499 doi: 10.1097/BOR.0000000000000471
Chung, Y. L., Lee, M. Y., Wang, A. J. & Yao, L. F. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol. Ther. 8, 707–717 (2003).
pubmed: 14599803 doi: 10.1016/S1525-0016(03)00235-1
Joosten, L. A., Leoni, F., Meghji, S. & Mascagni, P. Inhibition of HDAC activity by ITF2357 ameliorates joint inflammation and prevents cartilage and bone destruction in experimental arthritis. Mol. Med. 17, 391–396 (2011).
pubmed: 21327299 pmcid: 3105133 doi: 10.2119/molmed.2011.00058
Nishida, K. et al. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16
pubmed: 15476220 doi: 10.1002/art.20709
Li, M. et al. Therapeutic effects of NK-HDAC-1, a novel histone deacetylase inhibitor, on collagen-induced arthritis through the induction of apoptosis of fibroblast-like synoviocytes. Inflammation 36, 888–896 (2013).
pubmed: 23549599 doi: 10.1007/s10753-013-9616-0
Lee, J. et al. A novel histone deacetylase 6-selective inhibitor suppresses synovial inflammation and joint destruction in a collagen antibody-induced arthritis mouse model. Int. J. Rheum. Dis. 18, 514–523 (2015).
pubmed: 25530272 doi: 10.1111/1756-185X.12501
Vojinovic, J. et al. Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 63, 1452–1458 (2011).
pubmed: 21538322 doi: 10.1002/art.30238
Angiolilli, C. et al. Control of cytokine mRNA degradation by the histone deacetylase inhibitor ITF2357 in rheumatoid arthritis fibroblast-like synoviocytes: beyond transcriptional regulation. Arthritis Res. Ther. 20, 148 (2018).
pubmed: 30029685 pmcid: 6053802 doi: 10.1186/s13075-018-1638-4
Grabiec, A. M., Korchynskyi, O., Tak, P. P. & Reedquist, K. A. Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay. Ann. Rheum. Dis. 71, 424–431 (2012).
pubmed: 21953341 doi: 10.1136/ard.2011.154211
Loh, C. et al. TNF-induced inflammatory genes escape repression in fibroblast-like synoviocytes: transcriptomic and epigenomic analysis. Ann. Rheum. Dis. 78, 1205–1214 (2019).
pubmed: 31097419 pmcid: 6692909 doi: 10.1136/annrheumdis-2018-214783
Klein, K. et al. The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts. Ann. Rheum. Dis. 75, 422–429 (2016).
pubmed: 25467295 doi: 10.1136/annrheumdis-2014-205809
Xiao, Y. et al. Bromodomain and extra-terminal domain bromodomain inhibition prevents synovial inflammation via blocking IκB kinase-dependent NF-κB activation in rheumatoid fibroblast-like synoviocytes. Rheumatology 55, 173–184 (2016).
pubmed: 26324948 doi: 10.1093/rheumatology/kev312
Mele, D. A. et al. BET bromodomain inhibition suppresses T
pubmed: 24101376 pmcid: 3804955 doi: 10.1084/jem.20130376
Tough, D. F., Tak, P. P., Tarakhovsky, A. & Prinjha, R. K. Epigenetic drug discovery: breaking through the immune barrier. Nat. Rev. Drug Discov. 15, 835–853 (2016).
pubmed: 27765940 doi: 10.1038/nrd.2016.185
Subramaniam, D., Thombre, R., Dhar, A. & Anant, S. DNA methyltransferases: a novel target for prevention and therapy. Front. Oncol. 4, 80 (2014).
pubmed: 24822169 pmcid: 4013461 doi: 10.3389/fonc.2014.00080
Najm, A. et al. Standardisation of synovial biopsy analyses in rheumatic diseases: a consensus of the EULAR Synovitis and OMERACT Synovial Tissue Biopsy Groups. Arthritis Res. Ther. 20, 265 (2018).
pubmed: 30509322 pmcid: 6276172 doi: 10.1186/s13075-018-1762-1
Menche, J. et al. Integrating personalized gene expression profiles into predictive disease-associated gene pools. NPJ Syst. Biol. Appl. 3, 10 (2017).
pubmed: 28649437 pmcid: 5445628 doi: 10.1038/s41540-017-0009-0
Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).
pubmed: 28191901 pmcid: 5388574 doi: 10.1038/nbt.3803
Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).
pubmed: 29160308 pmcid: 5726555 doi: 10.1038/nature24644
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
pubmed: 27096365 pmcid: 4873371 doi: 10.1038/nature17946
Villiger, L. et al. Treatment of metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).
pubmed: 30297904 doi: 10.1038/s41591-018-0209-1
HuBMAP Consortium. The human body at cellular resolution: the NIH human biomolecular atlas program. Nature 574, 187–192 (2019).

Auteurs

Gyrid Nygaard (G)

Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, San Diego, CA, USA.

Gary S Firestein (GS)

Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, San Diego, CA, USA. gfirestein@health.ucsd.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH