Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes.
Arthritis, Rheumatoid
/ genetics
B-Lymphocytes
/ immunology
Bone Resorption
/ immunology
Cadherins
/ metabolism
Cartilage, Articular
/ immunology
DNA Methylation
Endothelial Cells
/ metabolism
Epigenesis, Genetic
Fibroblasts
/ immunology
Humans
Macrophages
/ immunology
Molecular Targeted Therapy
Monocytes
/ immunology
Neovascularization, Pathologic
/ immunology
Osteogenesis
Protein Tyrosine Phosphatases
/ metabolism
Synovial Membrane
/ cytology
Synoviocytes
/ immunology
T-Lymphocytes
/ immunology
Journal
Nature reviews. Rheumatology
ISSN: 1759-4804
Titre abrégé: Nat Rev Rheumatol
Pays: United States
ID NLM: 101500080
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
accepted:
23
03
2020
pubmed:
13
5
2020
medline:
21
10
2020
entrez:
13
5
2020
Statut:
ppublish
Résumé
Rheumatoid arthritis (RA) is a chronic immune-mediated disease that primarily affects the synovium of diarthrodial joints. During the course of RA, the synovium transforms into a hyperplastic invasive tissue that causes destruction of cartilage and bone. Fibroblast-like synoviocytes (FLS), which form the lining of the joint, are epigenetically imprinted with an aggressive phenotype in RA and have an important role in these pathological processes. In addition to producing the extracellular matrix and joint lubricants, FLS in RA produce pathogenic mediators such as cytokines and proteases that contribute to disease pathogenesis and perpetuation. The development of multi-omics integrative analyses have enabled new ways to dissect the mechanisms that imprint FLS, have helped to identify potential FLS subsets with distinct functions and have identified differences in FLS phenotypes between joints in individual patients. This Review provides an overview of advances in understanding of FLS biology and highlights omics approaches and studies that hold promise for identifying future therapeutic targets.
Identifiants
pubmed: 32393826
doi: 10.1038/s41584-020-0413-5
pii: 10.1038/s41584-020-0413-5
pmc: PMC7987137
mid: NIHMS1679841
doi:
Substances chimiques
Cadherins
0
osteoblast cadherin
156621-71-5
Protein Tyrosine Phosphatases
EC 3.1.3.48
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
316-333Subventions
Organisme : NIAMS NIH HHS
ID : R01 AR065466
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR071321
Pays : United States
Références
Klareskog, L., Catrina, A. I. & Paget, S. Rheumatoid arthritis. Lancet 373, 659–672 (2009).
pubmed: 19157532
doi: 10.1016/S0140-6736(09)60008-8
Arnett, F. C. et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31, 315–324 (1988).
pubmed: 3358796
doi: 10.1002/art.1780310302
Choy, E. H., Kavanaugh, A. F. & Jones, S. A. The problem of choice: current biologic agents and future prospects in RA. Nat. Rev. Rheumatol. 9, 154–163 (2013).
pubmed: 23419427
doi: 10.1038/nrrheum.2013.8
Holers, V. M. et al. Rheumatoid arthritis and the mucosal origins hypothesis: protection turns to destruction. Nat. Rev. Rheumatol. 14, 542–557 (2018).
pubmed: 30111803
pmcid: 6704378
doi: 10.1038/s41584-018-0070-0
Bartok, B. & Firestein, G. S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev. 233, 233–255 (2010).
pubmed: 20193003
pmcid: 2913689
doi: 10.1111/j.0105-2896.2009.00859.x
Filer, A. The fibroblast as a therapeutic target in rheumatoid arthritis. Curr. Opin. Pharmacol. 13, 413–419 (2013).
pubmed: 23562164
doi: 10.1016/j.coph.2013.02.006
Firestein, G. S. Biomedicine. Every joint has a silver lining. Science 315, 952–953 (2007).
pubmed: 17303744
doi: 10.1126/science.1139574
Valencia, X. et al. Cadherin-11 provides specific cellular adhesion between fibroblast-like synoviocytes. J. Exp. Med. 200, 1673–1679 (2004).
pubmed: 15611293
pmcid: 2211995
doi: 10.1084/jem.20041545
Bottini, N. & Firestein, G. S. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 9, 24–33 (2013).
pubmed: 23147896
doi: 10.1038/nrrheum.2012.190
Blewis, M. E. et al. Interactive cytokine regulation of synoviocyte lubricant secretion. Tissue Eng. Part A 16, 1329–1337 (2010).
pubmed: 19908966
doi: 10.1089/ten.tea.2009.0210
McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).
pubmed: 17525752
doi: 10.1038/nri2094
Firestein, G. S. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum. 39, 1781–1790 (1996).
pubmed: 8912499
doi: 10.1002/art.1780391103
Ai, R. et al. DNA methylome signature in synoviocytes from patients with early rheumatoid arthritis compared to synoviocytes from patients with longstanding rheumatoid arthritis. Arthritis Rheumatol. 67, 1978–1980 (2015).
pubmed: 25808728
pmcid: 4485541
doi: 10.1002/art.39123
Veale, D. & Firestein, G. S. in Kelley and Firestein’s textbook of rheumatology 10th edn, (eds Firestein, G. S. et al.) 20–33 (Elsevier, 2016).
Lever, J. D. & Ford, E. H. Histological, histochemical and electron microscopic observations on synovial membrane. Anat. Rec. 132, 525–539 (1958).
pubmed: 13650183
doi: 10.1002/ar.1091320402
Barland, P., Novikoff, A. B. & Hamerman, D. Electron microscopy of the human synovial membrane. J. Cell Biol. 14, 207–220 (1962).
pubmed: 13865038
pmcid: 2106097
doi: 10.1083/jcb.14.2.207
Castor, C. W. The microscopic structure of normal human synovial tissue. Arthritis Rheum. 3, 140–151 (1960).
pubmed: 13808324
doi: 10.1002/art.1780030205
Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).
pubmed: 31391580
pmcid: 6805223
doi: 10.1038/s41586-019-1471-1
Buckley, C. D. Macrophages form a protective cellular barrier in joints. Nature 572, 590–592 (2019).
pubmed: 31444488
doi: 10.1038/d41586-019-02340-x
Jay, G. D., Britt, D. E. & Cha, C. J. Lubricin is a product of megakaryocyte stimulating factor gene expression by human synovial fibroblasts. J. Rheumatol. 27, 594–600 (2000).
pubmed: 10743795
Jay, G. D. & Waller, K. A. The biology of lubricin: near frictionless joint motion. Matrix Biol. 39, 17–24 (2014).
pubmed: 25172828
doi: 10.1016/j.matbio.2014.08.008
Swann, D. A., Silver, F. H., Slayter, H. S., Stafford, W. & Shore, E. The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial fluids. Biochem. J. 225, 195–201 (1985).
pubmed: 3977823
pmcid: 1144569
doi: 10.1042/bj2250195
Firestein, G. S. Etiology and pathogenesis of rheumatoid arthritis, In Kelley and Firestein’s Textbook of Rheumatology 10th edn, (eds Firestein, G. S. et al.) 1115–1166 (Elsevier, Philadelphia, 2017)
Sabeh, F., Fox, D. & Weiss, S. J. Membrane-type I matrix metalloproteinase-dependent regulation of rheumatoid arthritis synoviocyte function. J. Immunol. 184, 6396–6406 (2010).
pubmed: 20483788
doi: 10.4049/jimmunol.0904068
Noss, E. H. & Brenner, M. B. The role and therapeutic implications of fibroblast-like synoviocytes in inflammation and cartilage erosion in rheumatoid arthritis. Immunol. Rev. 223, 252–270 (2008).
pubmed: 18613841
doi: 10.1111/j.1600-065X.2008.00648.x
Muller-Ladner, U., Pap, T., Gay, R. E., Neidhart, M. & Gay, S. Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 1, 102–110 (2005).
pubmed: 16932639
doi: 10.1038/ncprheum0047
Burrage, P. S., Mix, K. S. & Brinckerhoff, C. E. Matrix metalloproteinases: role in arthritis. Front. Biosci. 11, 529–543 (2006).
pubmed: 16146751
doi: 10.2741/1817
Lafyatis, R. et al. Anchorage-independent growth of synoviocytes from arthritic and normal joints. Stimulation by exogenous platelet-derived growth factor and inhibition by transforming growth factor-β and retinoids. J. Clin. Invest. 83, 1267–1276 (1989).
pubmed: 2784799
pmcid: 303817
doi: 10.1172/JCI114011
Korb, A., Pavenstadt, H. & Pap, T. Cell death in rheumatoid arthritis. Apoptosis 14, 447–454 (2009).
pubmed: 19199037
doi: 10.1007/s10495-009-0317-y
Kato, M., Ospelt, C., Gay, R. E., Gay, S. & Klein, K. Dual role of autophagy in stress-induced cell death in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol. 66, 40–48 (2014).
pubmed: 24449574
doi: 10.1002/art.38190
Shin, Y. J. et al. Autophagy induction and CHOP under-expression promotes survival of fibroblasts from rheumatoid arthritis patients under endoplasmic reticulum stress. Arthritis Res. Ther. 12, R19 (2010).
pubmed: 20122151
pmcid: 2875648
doi: 10.1186/ar2921
Steenvoorden, M. M. et al. Transition of healthy to diseased synovial tissue in rheumatoid arthritis is associated with gain of mesenchymal/fibrotic characteristics. Arthritis Res. Ther. 8, R165 (2006).
pubmed: 17076892
pmcid: 1794508
doi: 10.1186/ar2073
Marinova-Mutafchieva, L., Williams, R. O., Funa, K., Maini, R. N. & Zvaifler, N. J. Inflammation is preceded by tumor necrosis factor-dependent infiltration of mesenchymal cells in experimental arthritis. Arthritis Rheum. 46, 507–513 (2002).
pubmed: 11840454
doi: 10.1002/art.10126
Corr, M. & Zvaifler, N. J. Mesenchymal precursor cells. Ann. Rheum. Dis. 61, 3–5 (2002).
pubmed: 11779748
pmcid: 1753867
doi: 10.1136/ard.61.1.3
Lefevre, S. et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 15, 1414–1420 (2009).
pubmed: 19898488
pmcid: 3678354
doi: 10.1038/nm.2050
Tolboom, T. C. et al. Invasive properties of fibroblast-like synoviocytes: correlation with growth characteristics and expression of MMP-1, MMP-3, and MMP-10. Ann. Rheum. Dis. 61, 975–980 (2002).
pubmed: 12379519
pmcid: 1753950
doi: 10.1136/ard.61.11.975
Miller, M. C. et al. Membrane type 1 matrix metalloproteinase is a crucial promoter of synovial invasion in human rheumatoid arthritis. Arthritis Rheum. 60, 686–697 (2009).
pubmed: 19248098
pmcid: 2819053
doi: 10.1002/art.24331
Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 4, 18001 (2018).
pubmed: 29417936
doi: 10.1038/nrdp.2018.1
Izquierdo, E. et al. Synovial fibroblast hyperplasia in rheumatoid arthritis: clinicopathologic correlations and partial reversal by anti-tumor necrosis factor therapy. Arthritis Rheum. 63, 2575–2583 (2011).
pubmed: 21547893
doi: 10.1002/art.30433
Redlich, K. & Smolen, J. S. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat. Rev. Drug Discov. 11, 234–250 (2012).
pubmed: 22378270
doi: 10.1038/nrd3669
Armaka, M., Ospelt, C., Pasparakis, M. & Kollias, G. The p55TNFR-IKK2-Ripk3 axis orchestrates arthritis by regulating death and inflammatory pathways in synovial fibroblasts. Nat. Commun. 9, 618 (2018).
pubmed: 29434332
pmcid: 5809454
doi: 10.1038/s41467-018-02935-4
Armaka, M. et al. Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J. Exp. Med. 205, 331–337 (2008).
pubmed: 18250193
pmcid: 2271010
doi: 10.1084/jem.20070906
Ahn, J. K. et al. GC/TOF-MS-based metabolomic profiling in cultured fibroblast-like synoviocytes from rheumatoid arthritis. Joint Bone Spine 83, 707–713 (2016).
pubmed: 27133762
doi: 10.1016/j.jbspin.2015.11.009
Epstein, T., Gatenby, R. A. & Brown, J. S. The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. PLoS One 12, e0185085 (2017).
pubmed: 28922380
pmcid: 5602667
doi: 10.1371/journal.pone.0185085
Hua, S. & Dias, T. H. Hypoxia-inducible factor (HIF) as a target for novel therapies in rheumatoid arthritis. Front. Pharmacol. 7, 184 (2016).
pubmed: 27445820
pmcid: 4921475
doi: 10.3389/fphar.2016.00184
Bustamante, M. F. et al. Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. Ann. Rheum. Dis. 77, 1636–1643 (2018).
pubmed: 30061164
pmcid: 6328432
doi: 10.1136/annrheumdis-2018-213103
Garcia-Carbonell, R. et al. Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol. 68, 1614–1626 (2016).
pubmed: 26815411
pmcid: 4963240
doi: 10.1002/art.39608
de Oliveira, P. G., Farinon, M., Sanchez-Lopez, E., Miyamoto, S. & Guma, M. Fibroblast-like synoviocytes glucose metabolism as a therapeutic target in rheumatoid arthritis. Front. Immunol. 10, 1743 (2019).
pubmed: 31428089
pmcid: 6688519
doi: 10.3389/fimmu.2019.01743
Bustamante, M. F., Garcia-Carbonell, R., Whisenant, K. D. & Guma, M. Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res. Ther. 19, 110 (2017).
pubmed: 28569176
pmcid: 5452638
doi: 10.1186/s13075-017-1303-3
Fox, D. A., Gizinski, A., Morgan, R. & Lundy, S. K. Cell-cell interactions in rheumatoid arthritis synovium. Rheum. Dis. Clin. North Am. 36, 311–323 (2010).
pubmed: 20510236
pmcid: 2879397
doi: 10.1016/j.rdc.2010.02.004
Szekanecz, Z., Besenyei, T., Paragh, G. & Koch, A. E. New insights in synovial angiogenesis. Joint Bone Spine 77, 13–19 (2010).
pubmed: 20022538
doi: 10.1016/j.jbspin.2009.05.011
Buckley, C. D. Why does chronic inflammation persist: an unexpected role for fibroblasts. Immunol. Lett. 138, 12–14 (2011).
pubmed: 21333681
pmcid: 3110265
doi: 10.1016/j.imlet.2011.02.010
Buckley, C. D. et al. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 22, 199–204 (2001).
pubmed: 11274925
doi: 10.1016/S1471-4906(01)01863-4
Filer, A. et al. Differential survival of leukocyte subsets mediated by synovial, bone marrow, and skin fibroblasts: site-specific versus activation-dependent survival of T cells and neutrophils. Arthritis Rheum. 54, 2096–2108 (2006).
pubmed: 16802344
pmcid: 3119431
doi: 10.1002/art.21930
Reparon-Schuijt, C. C. et al. Regulation of synovial B cell survival in rheumatoid arthritis by vascular cell adhesion molecule 1 (CD106) expressed on fibroblast-like synoviocytes. Arthritis Rheum. 43, 1115–1121 (2000).
pubmed: 10817566
doi: 10.1002/1529-0131(200005)43:5<1115::AID-ANR22>3.0.CO;2-A
Burger, J. A., Zvaifler, N. J., Tsukada, N., Firestein, G. S. & Kipps, T. J. Fibroblast-like synoviocytes support B-cell pseudoemperipolesis via a stromal cell-derived factor-1- and CD106 (VCAM-1)-dependent mechanism. J. Clin. Invest. 107, 305–315 (2001).
pubmed: 11160154
pmcid: 199194
doi: 10.1172/JCI11092
Bombardieri, M. et al. A BAFF/APRIL-dependent TLR3-stimulated pathway enhances the capacity of rheumatoid synovial fibroblasts to induce AID expression and Ig class-switching in B cells. Ann. Rheum. Dis. 70, 1857–1865 (2011).
pubmed: 21798884
doi: 10.1136/ard.2011.150219
de Brito Rocha, S., Baldo, D. C. & Andrade, L. E. C. Clinical and pathophysiologic relevance of autoantibodies in rheumatoid arthritis. Adv. Rheumatol. 59, 2 (2019).
pubmed: 30657101
doi: 10.1186/s42358-018-0042-8
van Venrooij, W. J., van Beers, J. J. & Pruijn, G. J. Anti-CCP antibody, a marker for the early detection of rheumatoid arthritis. Ann. N. Y. Acad. Sci. 1143, 268–285 (2008).
pubmed: 19076355
doi: 10.1196/annals.1443.013
Take, Y. et al. Specifically modified osteopontin in rheumatoid arthritis fibroblast-like synoviocytes supports interaction with B cells and enhances production of interleukin-6. Arthritis Rheum. 60, 3591–3601 (2009).
pubmed: 19950274
doi: 10.1002/art.25020
Carmona-Rivera, C. et al. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci. Immunol. 2, eaag3358 (2017).
pubmed: 28649674
pmcid: 5479641
doi: 10.1126/sciimmunol.aag3358
Tran, C. N. et al. Presentation of arthritogenic peptide to antigen-specific T cells by fibroblast-like synoviocytes. Arthritis Rheum. 56, 1497–1506 (2007).
pubmed: 17469112
doi: 10.1002/art.22573
Yamamura, Y. et al. Effector function of resting T cells: activation of synovial fibroblasts. J. Immunol. 166, 2270–2275 (2001).
pubmed: 11160281
doi: 10.4049/jimmunol.166.4.2270
Chabaud, M. et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 42, 963–970 (1999).
pubmed: 10323452
doi: 10.1002/1529-0131(199905)42:5<963::AID-ANR15>3.0.CO;2-E
Tran, C. N. et al. Molecular interactions between T cells and fibroblast-like synoviocytes: role of membrane tumor necrosis factor-α on cytokine-activated T cells. Am. J. Pathol. 171, 1588–1598 (2007).
pubmed: 17823284
pmcid: 2043519
doi: 10.2353/ajpath.2007.070004
Naylor, A. J., Filer, A. & Buckley, C. D. The role of stromal cells in the persistence of chronic inflammation. Clin. Exp. Immunol. 171, 30–35 (2013).
pubmed: 23199320
pmcid: 3530092
doi: 10.1111/j.1365-2249.2012.04634.x
Lee, A. et al. Tumor necrosis factor α induces sustained signaling and a prolonged and unremitting inflammatory response in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 65, 928–938 (2013).
pubmed: 23335080
pmcid: 3618592
doi: 10.1002/art.37853
Migita, K. et al. TNF-α-induced miR-155 regulates IL-6 signaling in rheumatoid synovial fibroblasts. BMC Res. Notes 10, 403 (2017).
pubmed: 28807007
pmcid: 5556669
doi: 10.1186/s13104-017-2715-5
Jiao, Z. et al. Notch signaling mediates TNF-α-induced IL-6 production in cultured fibroblast-like synoviocytes from rheumatoid arthritis. Clin. Dev. Immunol. 2012, 350209 (2012).
pubmed: 22190977
doi: 10.1155/2012/350209
Perlman, H. et al. IL-6 and matrix metalloproteinase-1 are regulated by the cyclin-dependent kinase inhibitor p21 in synovial fibroblasts. J. Immunol. 170, 838–845 (2003).
pubmed: 12517948
doi: 10.4049/jimmunol.170.2.838
Loupasakis, K. et al. Tumor Necrosis Factor dynamically regulates the mRNA stabilome in rheumatoid arthritis fibroblast-like synoviocytes. PLoS One 12, e0179762 (2017).
pubmed: 28708839
pmcid: 5510804
doi: 10.1371/journal.pone.0179762
Donlin, L. T., Jayatilleke, A., Giannopoulou, E. G., Kalliolias, G. D. & Ivashkiv, L. B. Modulation of TNF-induced macrophage polarization by synovial fibroblasts. J. Immunol. 193, 2373–2383 (2014).
pubmed: 25057003
pmcid: 4135020
doi: 10.4049/jimmunol.1400486
Kuo, D. et al. HBEGF
pubmed: 31068444
pmcid: 6726376
doi: 10.1126/scitranslmed.aau8587
Jones, D. H., Kong, Y. Y. & Penninger, J. M. Role of RANKL and RANK in bone loss and arthritis. Ann. Rheum. Dis. 61 (Suppl. 2), ii32–ii39 (2002).
pubmed: 12379618
pmcid: 1766717
doi: 10.1136/ard.61.suppl_2.ii32
Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13, 156–163 (2007).
pubmed: 17237793
doi: 10.1038/nm1538
Klein, D. The tumor vascular endothelium as decision maker in cancer therapy. Front. Oncol. 2, eaag3358 (2018).
Filer, A. et al. Identification of a transitional fibroblast function in very early rheumatoid arthritis. Ann. Rheum. Dis. 76, 2105–2112 (2017).
pubmed: 28847766
pmcid: 5705853
doi: 10.1136/annrheumdis-2017-211286
Lewis, M. J. et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 28, 2455–2470.e5 (2019).
pubmed: 31461658
pmcid: 6718830
doi: 10.1016/j.celrep.2019.07.091
Humby, F. et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann. Rheum. Dis. 78, 761–772 (2019).
pubmed: 30878974
pmcid: 6579551
doi: 10.1136/annrheumdis-2018-214539
Ekwall, A. K. et al. The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid arthritis. Arthritis Res. Ther. 13, R40 (2011).
pubmed: 21385358
pmcid: 3132020
doi: 10.1186/ar3274
Kiener, H. P. et al. Synovial fibroblasts self-direct multicellular lining architecture and synthetic function in three-dimensional organ culture. Arthritis Rheum. 62, 742–752 (2010).
pubmed: 20131230
doi: 10.1002/art.27285
Lee, D. M. et al. Cadherin-11 in synovial lining formation and pathology in arthritis. Science 315, 1006–1010 (2007).
pubmed: 17255475
doi: 10.1126/science.1137306
Chang, S. K., Gu, Z. & Brenner, M. B. Fibroblast-like synoviocytes in inflammatory arthritis pathology: the emerging role of cadherin-11. Immunol. Rev. 233, 256–266 (2010).
pubmed: 20193004
doi: 10.1111/j.0105-2896.2009.00854.x
Noss, E. H. et al. Evidence for cadherin-11 cleavage in the synovium and partial characterization of its mechanism. Arthritis Res. Ther. 17, 126 (2015).
pubmed: 25975695
pmcid: 4449585
doi: 10.1186/s13075-015-0647-9
Vandooren, B. et al. Tumor necrosis factor α drives cadherin 11 expression in rheumatoid inflammation. Arthritis Rheum. 58, 3051–3062 (2008).
pubmed: 18821672
doi: 10.1002/art.23886
Wicki, A. et al. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9, 261–272 (2006).
pubmed: 16616332
doi: 10.1016/j.ccr.2006.03.010
Martín-Villar, E. et al. Characterization of human PA2.26 antigen (T1α-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int. J. Cancer 113, 899–910 (2005).
pubmed: 15515019
doi: 10.1002/ijc.20656
Donlin, L. T. et al. Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue. Arthritis Res. Ther. 20, 139 (2018).
pubmed: 29996944
pmcid: 6042350
doi: 10.1186/s13075-018-1631-y
Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).
pubmed: 29476097
pmcid: 5824882
doi: 10.1038/s41467-018-02892-y
Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 9, 791 (2018).
pubmed: 29476078
pmcid: 5824814
doi: 10.1038/s41467-017-02659-x
Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).
pubmed: 31061532
pmcid: 6602051
doi: 10.1038/s41590-019-0378-1
Croft, A. P. et al. Rheumatoid synovial fibroblasts differentiate into distinct subsets in the presence of cytokines and cartilage. Arthritis Res. Ther. 18, 270 (2016).
pubmed: 27863512
pmcid: 5116193
doi: 10.1186/s13075-016-1156-1
Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).
pubmed: 31142839
pmcid: 6690841
doi: 10.1038/s41586-019-1263-7
Tak, P. P., Zvaifler, N. J., Green, D. R. & Firestein, G. S. Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol. Today 21, 78–82 (2000).
pubmed: 10652465
doi: 10.1016/S0167-5699(99)01552-2
Lane, D. P. Cancer. p53, guardian of the genome. Nature 358, 15–16 (1992).
pubmed: 1614522
doi: 10.1038/358015a0
Firestein, G. S. et al. Apoptosis in rheumatoid arthritis: p53 overexpression in rheumatoid arthritis synovium. Am. J. Pathol. 149, 2143–2151 (1996).
pubmed: 8952546
pmcid: 1865342
Yamanishi, Y. et al. p53 tumor suppressor gene mutations in fibroblast-like synoviocytes from erosion synovium and non-erosion synovium in rheumatoid arthritis. Arthritis Res. Ther. 7, R12–R18 (2005).
pubmed: 15642132
doi: 10.1186/ar1448
Horn, H. F. & Vousden, K. H. Coping with stress: multiple ways to activate p53. Oncogene 26, 1306–1316 (2007).
pubmed: 17322916
doi: 10.1038/sj.onc.1210263
Theoret, M. R. et al. Relationship of p53 overexpression on cancers and recognition by anti-p53 T cell receptor-transduced T cells. Hum. Gene Ther. 19, 1219–1232 (2008).
pubmed: 19848582
pmcid: 2889139
doi: 10.1089/hum.2008.083
Han, Z., Boyle, D. L., Shi, Y., Green, D. R. & Firestein, G. S. Dominant-negative p53 mutations in rheumatoid arthritis. Arthritis Rheum. 42, 1088–1092 (1999).
pubmed: 10366100
doi: 10.1002/1529-0131(199906)42:6<1088::AID-ANR4>3.0.CO;2-E
Pap, T., Aupperle, K. R., Gay, S., Firestein, G. S. & Gay, R. E. Invasiveness of synovial fibroblasts is regulated by p53 in the SCID mouse in vivo model of cartilage invasion. Arthritis Rheum. 44, 676–681 (2001).
pubmed: 11263783
doi: 10.1002/1529-0131(200103)44:3<676::AID-ANR117>3.0.CO;2-6
Weisbart, R. H. et al. BRAF drives synovial fibroblast transformation in rheumatoid arthritis. J. Biol. Chem. 285, 34299–34303 (2010).
pubmed: 20843808
pmcid: 2966042
doi: 10.1074/jbc.C110.168195
Bang, H. et al. Mutation and citrullination modifies vimentin to a novel autoantigen for rheumatoid arthritis. Arthritis Rheum. 56, 2503–2511 (2007).
pubmed: 17665451
doi: 10.1002/art.22817
Da Sylva, T. R., Connor, A., Mburu, Y., Keystone, E. & Wu, G. E. Somatic mutations in the mitochondria of rheumatoid arthritis synoviocytes. Arthritis Res. Ther. 7, R844–R851 (2005).
pubmed: 15987486
pmcid: 1175034
doi: 10.1186/ar1752
Maximo, V., Soares, P., Lima, J., Cameselle-Teijeiro, J. & Sobrinho-Simoes, M. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hurthle cell tumors. Am. J. Pathol. 160, 1857–1865 (2002).
pubmed: 12000737
pmcid: 1850872
doi: 10.1016/S0002-9440(10)61132-7
Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).
pubmed: 24390342
doi: 10.1038/nature12873
Viatte, S., Plant, D. & Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 141–153 (2013).
pubmed: 23381558
pmcid: 3694322
doi: 10.1038/nrrheum.2012.237
Kim, K., Bang, S. Y., Lee, H. S. & Bae, S. C. Update on the genetic architecture of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 13–24 (2017).
pubmed: 27811914
doi: 10.1038/nrrheum.2016.176
Maeshima, K. et al. Abnormal PTPN11 enhancer methylation promotes rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and joint inflammation. JCI Insight https://doi.org/10.1172/jci.insight.86580 (2016).
doi: 10.1172/jci.insight.86580
pubmed: 27275015
pmcid: 4889026
Matsuda, S. et al. Regulation of the cell cycle and inflammatory arthritis by the transcription cofactor. J. Immunol. 199, 2316–2322 (2017).
pubmed: 28807995
pmcid: 5605444
doi: 10.4049/jimmunol.1700719
Aho, K., Koskenvuo, M., Tuominen, J. & Kaprio, J. Occurrence of rheumatoid arthritis in a nationwide series of twins. J. Rheumatol. 13, 899–902 (1986).
pubmed: 3820198
MacGregor, A. J. et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 43, 30–37 (2000).
pubmed: 10643697
doi: 10.1002/1529-0131(200001)43:1<30::AID-ANR5>3.0.CO;2-B
Svendsen, A. J. et al. On the origin of rheumatoid arthritis: the impact of environment and genes-a population based twin study. PLoS One 8, e57304 (2013).
pubmed: 23468964
pmcid: 3585362
doi: 10.1371/journal.pone.0057304
Doody, K. M., Bottini, N. & Firestein, G. S. Epigenetic alterations in rheumatoid arthritis fibroblast-like synoviocytes. Epigenomics 9, 479–492 (2017).
pubmed: 28322585
pmcid: 5549652
doi: 10.2217/epi-2016-0151
Jablonka, E. & Raz, G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 84, 131–176 (2009).
pubmed: 19606595
doi: 10.1086/598822
Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).
pubmed: 27346641
doi: 10.1038/nrg.2016.59
Karouzakis, E., Gay, R. E., Gay, S. & Neidhart, M. Epigenetic deregulation in rheumatoid arthritis. Adv. Exp. Med. Biol. 711, 137–149 (2011).
pubmed: 21627047
doi: 10.1007/978-1-4419-8216-2_10
Schubeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).
pubmed: 25592537
doi: 10.1038/nature14192
Robertson, K. D. DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610 (2005).
pubmed: 16136652
doi: 10.1038/nrg1655
Jin, B., Li, Y. & Robertson, K. D. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2, 607–617 (2011).
pubmed: 21941617
pmcid: 3174260
doi: 10.1177/1947601910393957
Kulis, M. & Esteller, M. DNA methylation and cancer. Adv. Genet. 70, 27–56 (2010).
pubmed: 20920744
doi: 10.1016/B978-0-12-380866-0.60002-2
Karouzakis, E., Gay, R. E., Michel, B. A., Gay, S. & Neidhart, M. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 60, 3613–3622 (2009).
pubmed: 19950268
doi: 10.1002/art.25018
Takami, N. et al. Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum. 54, 779–787 (2006).
pubmed: 16508942
doi: 10.1002/art.21637
Nakano, K., Whitaker, J. W., Boyle, D. L., Wang, W. & Firestein, G. S. DNA methylome signature in rheumatoid arthritis. Ann. Rheum. Dis. 72, 110–117 (2013).
pubmed: 22736089
doi: 10.1136/annrheumdis-2012-201526
Nakano, K., Boyle, D. L. & Firestein, G. S. Regulation of DNA methylation in rheumatoid arthritis synoviocytes. J. Immunol. 190, 1297–1303 (2013).
pubmed: 23277489
doi: 10.4049/jimmunol.1202572
Whitaker, J. W. et al. An imprinted rheumatoid arthritis methylome signature reflects pathogenic phenotype. Genome Med. 5, 40 (2013).
pubmed: 23631487
pmcid: 3706831
doi: 10.1186/gm444
de la Rica, L. et al. Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J. Autoimmun. 41, 6–16 (2013).
pubmed: 23306098
doi: 10.1016/j.jaut.2012.12.005
Rhead, B. et al. Rheumatoid arthritis naive T cells share hypermethylation sites with synoviocytes. Arthritis Rheumatol. 69, 550–559 (2017).
pubmed: 27723282
pmcid: 5328845
doi: 10.1002/art.39952
Ai, R. et al. Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat. Commun. 9, 1921 (2018).
pubmed: 29765031
pmcid: 5953939
doi: 10.1038/s41467-018-04310-9
Karouzakis, E. et al. Analysis of early changes in DNA methylation in synovial fibroblasts of RA patients before diagnosis. Sci. Rep. 8, 7370 (2018).
pubmed: 29743579
pmcid: 5943364
doi: 10.1038/s41598-018-24240-2
Firestein, G. S. Pathogenesis of rheumatoid arthritis: the intersection of genetics and epigenetics. Trans. Am. Clin. Climatol. Assoc. 129, 171–182 (2018).
pubmed: 30166712
pmcid: 6116585
Hammond, S. M. An overview of microRNAs. Adv. Drug Deliv. Rev. 87, 3–14 (2015).
pubmed: 25979468
pmcid: 4504744
doi: 10.1016/j.addr.2015.05.001
Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).
pubmed: 25363779
doi: 10.1038/nature13835
Klein, K. & Gay, S. Epigenetics in rheumatoid arthritis. Curr. Opin. Rheumatol. 27, 76–82 (2015).
pubmed: 25415526
doi: 10.1097/BOR.0000000000000128
Niederer, F. et al. Down-regulation of microRNA-34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum. 64, 1771–1779 (2012).
pubmed: 22161761
doi: 10.1002/art.34334
Stanczyk, J. et al. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum. 63, 373–381 (2011).
pubmed: 21279994
pmcid: 3116142
doi: 10.1002/art.30115
Stanczyk, J. et al. Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 58, 1001–1009 (2008).
pubmed: 18383392
doi: 10.1002/art.23386
Kurowska-Stolarska, M. et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc. Natl Acad. Sci. USA 108, 11193–11198 (2011).
pubmed: 21690378
doi: 10.1073/pnas.1019536108
Bluml, S. et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum. 63, 1281–1288 (2011).
pubmed: 21321928
doi: 10.1002/art.30281
Nakamachi, Y. et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum. 60, 1294–1304 (2009).
pubmed: 19404929
doi: 10.1002/art.24475
Pandis, I. et al. Identification of microRNA-221/222 and microRNA-323-3p association with rheumatoid arthritis via predictions using the human tumour necrosis factor transgenic mouse model. Ann. Rheum. Dis. 71, 1716–1723 (2012).
pubmed: 22562984
doi: 10.1136/annrheumdis-2011-200803
Araki, Y. et al. Histone methylation and STAT-3 differentially regulate interleukin-6-induced matrix metalloproteinase gene activation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol. 68, 1111–1123 (2016).
pubmed: 26713842
Dong, X. & Weng, Z. The correlation between histone modifications and gene expression. Epigenomics 5, 113–116 (2013).
pubmed: 23566087
pmcid: 4230708
doi: 10.2217/epi.13.13
Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010).
pubmed: 21068722
pmcid: 5415086
doi: 10.1038/nature09589
Angiolilli, C., Baeten, D. L., Radstake, T. R. & Reedquist, K. A. The acetyl code in rheumatoid arthritis and other rheumatic diseases. Epigenomics 9, 447–461 (2017).
pubmed: 28102705
doi: 10.2217/epi-2016-0136
Horiuchi, M. et al. Expression and function of histone deacetylases in rheumatoid arthritis synovial fibroblasts. J. Rheumatol. 36, 1580–1589 (2009).
pubmed: 19531758
doi: 10.3899/jrheum.081115
Niederer, F. et al. SIRT1 overexpression in the rheumatoid arthritis synovium contributes to proinflammatory cytokine production and apoptosis resistance. Ann. Rheum. Dis. 70, 1866–1873 (2011).
pubmed: 21742641
doi: 10.1136/ard.2010.148957
Woo, S. J. et al. Myeloid deletion of SIRT1 suppresses collagen-induced arthritis in mice by modulating dendritic cell maturation. Exp. Mol. Med. 48, e221 (2016).
pubmed: 26987484
pmcid: 4892877
doi: 10.1038/emm.2015.124
Sohn, C. et al. Prolonged tumor necrosis factor α primes fibroblast-like synoviocytes in a gene-specific manner by altering chromatin. Arthritis Rheumatol. 67, 86–95 (2015).
pubmed: 25199798
pmcid: 4455921
doi: 10.1002/art.38871
Kawabata, T. et al. Increased activity and expression of histone deacetylase 1 in relation to tumor necrosis factor-α in synovial tissue of rheumatoid arthritis. Arthritis Res. Ther. 12, R133 (2010).
pubmed: 20609223
pmcid: 2945023
doi: 10.1186/ar3071
Angiolilli, C. et al. Inflammatory cytokines epigenetically regulate rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing HDAC5 expression. Ann. Rheum. Dis. 75, 430–438 (2016).
pubmed: 25452308
doi: 10.1136/annrheumdis-2014-205635
Whitaker, J. W. et al. Integrative omics analysis of rheumatoid arthritis identifies non-obvious therapeutic targets. PLoS One 10, e0124254 (2015).
pubmed: 25901943
pmcid: 4406750
doi: 10.1371/journal.pone.0124254
Hammaker, D. et al. LBH gene transcription regulation by the interplay of an enhancer risk allele and DNA methylation in rheumatoid arthritis. Arthritis Rheumatol. 68, 2637–2645 (2016).
pubmed: 27159840
pmcid: 5083131
doi: 10.1002/art.39746
Ekwall, A. K. et al. The rheumatoid arthritis risk gene LBH regulates growth in fibroblast-like synoviocytes. Arthritis Rheumatol. 67, 1193–1202 (2015).
pubmed: 25707478
pmcid: 4490933
doi: 10.1002/art.39060
Matsuda, S. et al. Regulation of the cell cycle and inflammatory arthritis by the transcription cofactor LBH gene. J. Immunol. 199, 2316–2322 (2017).
pubmed: 28807995
pmcid: 5605444
doi: 10.4049/jimmunol.1700719
Stanford, S. M. et al. Protein tyrosine phosphatase expression profile of rheumatoid arthritis fibroblast-like synoviocytes: a novel role of SH2 domain-containing phosphatase 2 as a modulator of invasion and survival. Arthritis Rheum. 65, 1171–1180 (2013).
pubmed: 23335101
pmcid: 3636201
doi: 10.1002/art.37872
Tolboom, T. C. et al. Invasiveness of fibroblast-like synoviocytes is an individual patient characteristic associated with the rate of joint destruction in patients with rheumatoid arthritis. Arthritis Rheum. 52, 1999–2002 (2005).
pubmed: 15986342
doi: 10.1002/art.21118
Laragione, T., Brenner, M., Mello, A., Symons, M. & Gulko, P. S. The arthritis severity locus Cia5d is a novel genetic regulator of the invasive properties of synovial fibroblasts. Arthritis Rheum. 58, 2296–2306 (2008).
pubmed: 18668563
pmcid: 2714698
doi: 10.1002/art.23610
Laragione, T. et al. Huntingtin-interacting protein 1 (HIP1) regulates arthritis severity and synovial fibroblast invasiveness by altering PDGFR and Rac1 signalling. Ann. Rheum. Dis. 11, 1627–1635 (2018).
doi: 10.1136/annrheumdis-2018-213498
Kraan, M. C. et al. Comparison of synovial tissues from the knee joints and the small joints of rheumatoid arthritis patients: implications for pathogenesis and evaluation of treatment. Arthritis Rheum. 46, 2034–2038 (2002).
pubmed: 12209505
doi: 10.1002/art.10556
Ai, R. et al. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun. 7, 11849 (2016).
pubmed: 27282753
pmcid: 4906396
doi: 10.1038/ncomms11849
Frank-Bertoncelj, M. et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun. 8, 14852 (2017).
pubmed: 28332497
pmcid: 5376654
doi: 10.1038/ncomms14852
Wang, P. et al. Cyclic mechanical stretch downregulates IL-1β-induced COX-2 expression and PGE(2) production in rheumatoid arthritis fibroblast-like synoviocytes. Connect. Tissue Res. 52, 190–197 (2011).
pubmed: 20887233
doi: 10.3109/03008207.2010.508853
Hammaker, D. et al. Joint location-specific JAK-STAT signaling in rheumatoid arthritis fibroblast-like synoviocytes. ACR Open Rheumatol. 1, 640–648 (2019).
pubmed: 31872186
pmcid: 6917316
doi: 10.1002/acr2.11093
Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).
pubmed: 7913880
doi: 10.1016/0092-8674(94)90290-9
Zakany, J. & Duboule, D. The role of Hox genes during vertebrate limb development. Curr. Opin. Genet. Dev. 17, 359–366 (2007).
pubmed: 17644373
doi: 10.1016/j.gde.2007.05.011
Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).
pubmed: 21423168
pmcid: 3670758
doi: 10.1038/nature09819
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).
pubmed: 10647931
doi: 10.1016/S0092-8674(00)81683-9
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
pubmed: 21376230
pmcid: 21376230
doi: 10.1016/j.cell.2011.02.013
Neumann, E., Lefevre, S., Zimmermann, B., Gay, S. & Muller-Ladner, U. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol. Med. 16, 458–468 (2010).
pubmed: 20739221
doi: 10.1016/j.molmed.2010.07.004
Sanchez-Lopez, E., Cheng, A. & Guma, M. Can metabolic pathways be therapeutic targets in rheumatoid arthritis? J. Clin. Med. 8, E753 (2019).
pubmed: 31137815
doi: 10.3390/jcm8050753
McGarry, T. et al. JAK/STAT blockade alters synovial bioenergetics, mitochondrial function, and proinflammatory mediators in rheumatoid arthritis. Arthritis Rheumatol. 70, 1959–1970 (2018).
pubmed: 29790294
doi: 10.1002/art.40569
Finch, R. et al. OP0224 results of a phase 2 study of RG6125, an anti-cadherin-11 monoclonal antibody, in rheumatoid arthritis patients with an inadequate response to anti-TNFα therapy. Ann. Rheum. Dis. 78, 189 (2019).
Doody, K. M. et al. Targeting phosphatase-dependent proteoglycan switch for rheumatoid arthritis therapy. Sci. Transl. Med. 7, 288ra276 (2015).
doi: 10.1126/scitranslmed.aaa4616
Stanford, S. M. et al. TGFβ responsive tyrosine phosphatase promotes rheumatoid synovial fibroblast invasiveness. Ann. Rheum. Dis. 75, 295–302 (2016).
pubmed: 25378349
doi: 10.1136/annrheumdis-2014-205790
Stanford, S. M. et al. Receptor protein tyrosine phosphatase α-mediated enhancement of rheumatoid synovial fibroblast signaling and promotion of arthritis in mice. Arthritis Rheumatol. 68, 359–369 (2016).
pubmed: 26414708
pmcid: 4770259
doi: 10.1002/art.39442
Stanford, S. M. & Bottini, N. Targeting tyrosine phosphatases: time to end the stigma. Trends Pharmacol. Sci. 38, 524–540 (2017).
pubmed: 28412041
pmcid: 5494996
doi: 10.1016/j.tips.2017.03.004
Kim, C. et al. The kinase p38α serves cell type-specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression. Nat. Immunol. 9, 1019–1027 (2008).
pubmed: 18677317
pmcid: 2587092
doi: 10.1038/ni.1640
Ananieva, O. et al. The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nat. Immunol. 9, 1028–1036 (2008).
pubmed: 18690222
doi: 10.1038/ni.1644
Guma, M. et al. Antiinflammatory functions of p38 in mouse models of rheumatoid arthritis: advantages of targeting upstream kinases MKK-3 or MKK-6. Arthritis Rheum. 64, 2887–2895 (2012).
pubmed: 22488549
pmcid: 3397277
doi: 10.1002/art.34489
Yoshizawa T. et al. Role of MAPK kinase 6 in arthritis: distinct mechanism of action in inflammation and cytokine expression. J. Immunol. 183 1360–1367 (2009).
pubmed: 19561096
doi: 10.4049/jimmunol.0900483
Nygaard, G. et al. Regulation and function of apoptosis signal-regulating kinase 1 in rheumatoid arthritis. Biochem. Pharmacol. 151, 282–290 (2018).
pubmed: 29408488
doi: 10.1016/j.bcp.2018.01.041
Mnich, S. J. et al. Critical role for apoptosis signal-regulating kinase 1 in the development of inflammatory K/BxN serum-induced arthritis. Int. Immunopharmacol. 10, 1170–1176 (2010).
pubmed: 20609399
doi: 10.1016/j.intimp.2010.06.023
Cha, H. S., Rosengren, S., Boyle, D. L. & Firestein, G. S. PUMA regulation and proapoptotic effects in fibroblast-like synoviocytes. Arthritis Rheum. 54, 587–592 (2006).
pubmed: 16447235
doi: 10.1002/art.21631
Hong, S. S. et al. PUMA gene delivery to synoviocytes reduces inflammation and degeneration of arthritic joints. Nat. Commun. 8, 146 (2017).
pubmed: 28747638
pmcid: 5529536
doi: 10.1038/s41467-017-00142-1
Evans, C. H. et al. Gene transfer to human joints: progress toward a gene therapy of arthritis. Proc. Natl Acad. Sci. USA 102, 8698–8703 (2005).
pubmed: 15939878
doi: 10.1073/pnas.0502854102
Zhu, S. et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat. Med. 18, 1077–1086 (2012).
pubmed: 22660635
doi: 10.1038/nm.2815
Hammaker, D. & Firestein, G. S. Epigenetics of inflammatory arthritis. Curr. Opin. Rheumatol. 30, 188–196 (2018).
pubmed: 29194108
pmcid: 5804499
doi: 10.1097/BOR.0000000000000471
Chung, Y. L., Lee, M. Y., Wang, A. J. & Yao, L. F. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol. Ther. 8, 707–717 (2003).
pubmed: 14599803
doi: 10.1016/S1525-0016(03)00235-1
Joosten, L. A., Leoni, F., Meghji, S. & Mascagni, P. Inhibition of HDAC activity by ITF2357 ameliorates joint inflammation and prevents cartilage and bone destruction in experimental arthritis. Mol. Med. 17, 391–396 (2011).
pubmed: 21327299
pmcid: 3105133
doi: 10.2119/molmed.2011.00058
Nishida, K. et al. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16
pubmed: 15476220
doi: 10.1002/art.20709
Li, M. et al. Therapeutic effects of NK-HDAC-1, a novel histone deacetylase inhibitor, on collagen-induced arthritis through the induction of apoptosis of fibroblast-like synoviocytes. Inflammation 36, 888–896 (2013).
pubmed: 23549599
doi: 10.1007/s10753-013-9616-0
Lee, J. et al. A novel histone deacetylase 6-selective inhibitor suppresses synovial inflammation and joint destruction in a collagen antibody-induced arthritis mouse model. Int. J. Rheum. Dis. 18, 514–523 (2015).
pubmed: 25530272
doi: 10.1111/1756-185X.12501
Vojinovic, J. et al. Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 63, 1452–1458 (2011).
pubmed: 21538322
doi: 10.1002/art.30238
Angiolilli, C. et al. Control of cytokine mRNA degradation by the histone deacetylase inhibitor ITF2357 in rheumatoid arthritis fibroblast-like synoviocytes: beyond transcriptional regulation. Arthritis Res. Ther. 20, 148 (2018).
pubmed: 30029685
pmcid: 6053802
doi: 10.1186/s13075-018-1638-4
Grabiec, A. M., Korchynskyi, O., Tak, P. P. & Reedquist, K. A. Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay. Ann. Rheum. Dis. 71, 424–431 (2012).
pubmed: 21953341
doi: 10.1136/ard.2011.154211
Loh, C. et al. TNF-induced inflammatory genes escape repression in fibroblast-like synoviocytes: transcriptomic and epigenomic analysis. Ann. Rheum. Dis. 78, 1205–1214 (2019).
pubmed: 31097419
pmcid: 6692909
doi: 10.1136/annrheumdis-2018-214783
Klein, K. et al. The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts. Ann. Rheum. Dis. 75, 422–429 (2016).
pubmed: 25467295
doi: 10.1136/annrheumdis-2014-205809
Xiao, Y. et al. Bromodomain and extra-terminal domain bromodomain inhibition prevents synovial inflammation via blocking IκB kinase-dependent NF-κB activation in rheumatoid fibroblast-like synoviocytes. Rheumatology 55, 173–184 (2016).
pubmed: 26324948
doi: 10.1093/rheumatology/kev312
Mele, D. A. et al. BET bromodomain inhibition suppresses T
pubmed: 24101376
pmcid: 3804955
doi: 10.1084/jem.20130376
Tough, D. F., Tak, P. P., Tarakhovsky, A. & Prinjha, R. K. Epigenetic drug discovery: breaking through the immune barrier. Nat. Rev. Drug Discov. 15, 835–853 (2016).
pubmed: 27765940
doi: 10.1038/nrd.2016.185
Subramaniam, D., Thombre, R., Dhar, A. & Anant, S. DNA methyltransferases: a novel target for prevention and therapy. Front. Oncol. 4, 80 (2014).
pubmed: 24822169
pmcid: 4013461
doi: 10.3389/fonc.2014.00080
Najm, A. et al. Standardisation of synovial biopsy analyses in rheumatic diseases: a consensus of the EULAR Synovitis and OMERACT Synovial Tissue Biopsy Groups. Arthritis Res. Ther. 20, 265 (2018).
pubmed: 30509322
pmcid: 6276172
doi: 10.1186/s13075-018-1762-1
Menche, J. et al. Integrating personalized gene expression profiles into predictive disease-associated gene pools. NPJ Syst. Biol. Appl. 3, 10 (2017).
pubmed: 28649437
pmcid: 5445628
doi: 10.1038/s41540-017-0009-0
Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).
pubmed: 28191901
pmcid: 5388574
doi: 10.1038/nbt.3803
Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).
pubmed: 29160308
pmcid: 5726555
doi: 10.1038/nature24644
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
pubmed: 27096365
pmcid: 4873371
doi: 10.1038/nature17946
Villiger, L. et al. Treatment of metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).
pubmed: 30297904
doi: 10.1038/s41591-018-0209-1
HuBMAP Consortium. The human body at cellular resolution: the NIH human biomolecular atlas program. Nature 574, 187–192 (2019).