Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
08 2020
Historique:
received: 02 09 2019
accepted: 31 03 2020
pubmed: 13 5 2020
medline: 18 11 2020
entrez: 13 5 2020
Statut: ppublish

Résumé

Porphyromonas gingivalis, an asaccharolytic member of the Bacteroidetes, is a keystone pathogen in human periodontitis that may also contribute to the development of other chronic inflammatory diseases. P. gingivalis utilizes protease-generated peptides derived from extracellular proteins for growth, but how these peptides enter the cell is not clear. Here, we identify RagAB as the outer-membrane importer for these peptides. X-ray crystal structures show that the transporter forms a dimeric RagA

Identifiants

pubmed: 32393857
doi: 10.1038/s41564-020-0716-y
pii: 10.1038/s41564-020-0716-y
pmc: PMC7610489
mid: EMS118387
doi:

Substances chimiques

Bacterial Proteins 0
Membrane Transport Proteins 0
Oligopeptides 0
RagA protein, Porphyromonas gingivalis 0
RagB protein, bacteria 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1016-1025

Subventions

Organisme : Wellcome Trust
ID : 108466
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 214222
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 215064/Z/18/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 108466/Z/15/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 214222/Z/18/Z
Pays : United Kingdom

Références

Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C. & Kent, R. L. Jr. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25, 134–144 (1998).
pubmed: 9495612 doi: 10.1111/j.1600-051X.1998.tb02419.x
Eke, P. I. et al. Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J. Periodontol. 86, 611–622 (2015).
pubmed: 25688694 pmcid: 4460825 doi: 10.1902/jop.2015.140520
Dominy, S. S. et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 5, eaau3333 (2019).
pubmed: 30746447 pmcid: 6357742 doi: 10.1126/sciadv.aau3333
Potempa, J., Mydel, P. & Koziel, J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 606–620 (2017).
pubmed: 28835673 doi: 10.1038/nrrheum.2017.132
Tonetti, M. S. et al. Treatment of periodontitis and endothelial function. N. Engl. J. Med. 356, 911–920 (2007).
pubmed: 17329698 doi: 10.1056/NEJMoa063186
Usher, A. K. & Stockley, R. A. The link between chronic periodontitis and COPD: a common role for the neutrophil? BMC Med. 11, 241 (2013).
pubmed: 24229090 pmcid: 4225606 doi: 10.1186/1741-7015-11-241
Bui, F. Q. et al. Association between periodontal pathogens and systemic disease. Biomed J. 42, 27–35 (2019).
pubmed: 30987702 pmcid: 6468093 doi: 10.1016/j.bj.2018.12.001
Mayrand, D. & Holt, S. C. Biology of asaccharolytic black-pigmented Bacteroides species. Microbiol. Rev. 52, 134–152 (1988).
pubmed: 3280965 pmcid: 372709 doi: 10.1128/mr.52.1.134-152.1988
Nemoto, T. K., Ohara-Nemoto, Y., Bezerra, G. A., Shimoyama, Y. & Kimura, S. A. Porphyromonas gingivalis periplasmic novel exopeptidase, acylpeptidyl oligopeptidase, releases N-acylated di- and tripeptides from oligopeptides. J. Biol. Chem. 291, 5913–5925 (2016).
pubmed: 26733202 pmcid: 4786725 doi: 10.1074/jbc.M115.687566
Potempa, J., Banbula, A. & Travis, J. Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontol. 2000 24, 153–192 (2000).
pubmed: 11276866 doi: 10.1034/j.1600-0757.2000.2240108.x
Grenier, D. et al. Role of gingipains in growth of Porphyromonas gingivalis in the presence of human serum albumin. Infect. Immun. 69, 5166–5172 (2001).
pubmed: 11447200 pmcid: 98614 doi: 10.1128/IAI.69.8.5166-5172.2001
Nagano, K. et al. Characterization of RagA and RagB in Porphyromonas gingivalis: study using gene-deletion mutants. J. Med. Microbiol. 56, 1536–1548 (2007).
pubmed: 17965357 doi: 10.1099/jmm.0.47289-0
Goulas, T. et al. Structure of RagB, a major immunodominant outer-membrane surface receptor antigen of Porphyromonas gingivalis. Mol. Oral Microbiol. 31, 472–485 (2016).
pubmed: 26441291 doi: 10.1111/omi.12140
Bolam, D. N. & van den Berg, B. TonB-dependent transport by the gut microbiota: novel aspects of an old problem. Curr. Opin. Struct. Biol. 51, 35–43 (2018).
pubmed: 29550504 doi: 10.1016/j.sbi.2018.03.001
Bolam, D. N. & Koropatkin, N. M. Glycan recognition by the Bacteroidetes Sus-like systems. Curr. Opin. Struct. Biol. 22, 563–569 (2012).
pubmed: 22819666 doi: 10.1016/j.sbi.2012.06.006
Glenwright, A. J. et al. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature 541, 407–411 (2017).
pubmed: 28077872 pmcid: 5497811 doi: 10.1038/nature20828
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
doi: 10.1016/j.jmb.2007.05.022 pubmed: 17681537
Noinaj, N., Guillier, M., Barnard, T. J. & Buchanan, S. K. TonB-dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64, 43–60 (2010).
pubmed: 20420522 pmcid: 3108441 doi: 10.1146/annurev.micro.112408.134247
Freed, D. M., Horanyi, P. S., Wiener, M. C. & Cafiso, D. S. Conformational exchange in a membrane transport protein is altered in protein crystals. Biophys. J. 99, 604–610 (2010).
doi: 10.1016/j.bpj.2010.06.026
Hickman, S. J., Cooper, R. E. M., Bellucci, L., Paci, E. & Brockwell, D. J. Gating of TonB-dependent transporters by substrate-specific forced remodelling. Nat. Commun. 8, 14804 (2017).
pubmed: 28429713 pmcid: 5413942 doi: 10.1038/ncomms14804
Gómez-Santos, N., Glatter, T., Koebnik, R., Swiątek-Połatyńska, M. A. & Søgaard-Andersen, L. A. TonB-dependent transporter is required for secretion of protease PopC across the bacterial outer membrane. Nat. Commun. 10, 1360 (2019).
pubmed: 30911012 pmcid: 6434023 doi: 10.1038/s41467-019-09366-9
Hall, L. M. et al. Sequence diversity and antigenic variation at the rag locus of Porphyromonas gingivalis. Infect. Immun. 73, 4253–4262 (2005).
pubmed: 15972517 pmcid: 1168617 doi: 10.1128/IAI.73.7.4253-4262.2005
Milner, P., Batten, J. E. & Curtis, M. A. Development of a simple chemically defined medium for Porphyromonas gingivalis: requirement for α-ketoglutarate. FEMS Microbiol. Lett 140, 125–130 (1996).
pubmed: 8764473
Grenier, D. et al. Role of gingipains in growth of Porphyromonas gingivalis in the presence of human serum albumin. Infect. Immun. 69, 5166–5172 (2001).
pubmed: 11447200 pmcid: 98614 doi: 10.1128/IAI.69.8.5166-5172.2001
Nagano, K. et al. Trimeric structure of major outer membrane proteins homologous to OmpA in Porphyromonas gingivalis. J. Bacteriol. 187, 902–911 (2005).
pubmed: 15659668 pmcid: 545718 doi: 10.1128/JB.187.3.902-911.2005
Lamster, I. B. & Ahio, J. K. Analysis of gingival crevicular fluid as applied to the diagnosis of oral and systemic diseases. Ann. NY Acad. Sci. 1098, 216–229 (2007).
pubmed: 17435131 doi: 10.1196/annals.1384.027
Curtis, M. A., Hanley, S. A. & Aduse-Opoku, J. The rag locus of Porphyromonas gingivalis: a novel pathogenicity island. J. Periodontal Res. 34, 400–405 (1999).
pubmed: 10685368 doi: 10.1111/j.1600-0765.1999.tb02273.x
Josts, I., Veith, K. & Tidow, H. Ternary structure of the outer membrane transporter FoxA with resolved signalling domain provides insights into TonB-mediated siderophore uptake. eLife 8, e48528 (2019).
pubmed: 31385808 pmcid: 6699858 doi: 10.7554/eLife.48528
Kim, I., Stiefel, A., Plantör, S., Angerer, A. & Braun, V. Transcription induction of the ferric citrate transport genes via the N-terminus of the FecA outer membrane protein, the Ton system and the electrochemical potential of the cytoplasmic membrane. Mol. Microbiol. 23, 333–344 (1997).
pubmed: 9044267 doi: 10.1046/j.1365-2958.1997.2401593.x
Braun, V., Mahren, S. & Ogierman, M. Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Curr. Opin. Microbiol. 6, 173–180 (2003).
pubmed: 12732308 doi: 10.1016/S1369-5274(03)00022-5
Koebnik, R. TonB-dependent trans-envelope signalling: the exception or the rule? Trends Microbiol. 13, 343–347 (2005).
pubmed: 15993072 doi: 10.1016/j.tim.2005.06.005
Ho, M. H., Lamont, R. J. & Xie, H. Identification of Streptococcus cristatus peptides that repress expression of virulence genes in Porphyromonas gingivalis. Sci. Rep. 7, 1413 (2017).
pubmed: 28469253 pmcid: 5431200 doi: 10.1038/s41598-017-01551-4
Moynié, L. et al. The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. Nat. Commun. 10, 3673 (2019).
pubmed: 31413254 pmcid: 6694100 doi: 10.1038/s41467-019-11508-y
Balhesteros, H. et al. TonB-Dependent Heme/Hemoglobin Utilization by Caulobacter crescentus HutA. J. Bacteriol. 199, e00723–16 (2017).
pubmed: 28031282 pmcid: 5331666 doi: 10.1128/JB.00723-16
Koropatkin, N. M., Martens, E. C., Gordon, J. I. & Smith, T. J. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16, 1105–1115 (2008).
pubmed: 18611383 pmcid: 2563962 doi: 10.1016/j.str.2008.03.017
Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat Commun. 6, 7481 (2015).
pubmed: 26112186 doi: 10.1038/ncomms8481
Nguyen, K. A., Travis, J. & Potempa, J. Does the importance of the C-terminal residues in the maturation of RgpB from Porphyromonas gingivalis reveal a novel mechanism for protein export in a subgroup of Gram-negative bacteria? J. Bacteriol. 189, 833–843 (2007).
pubmed: 17142394 doi: 10.1128/JB.01530-06
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
pubmed: 19363495
Chiu, J., March, P. E., Lee, R. & Tillett, D. Site-directed, ligase-independent mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res. 32, e174 (2004).
pubmed: 15585660 pmcid: 535700 doi: 10.1093/nar/gnh172
Tagawa, J. et al. Development of a novel plasmid vector pTIO-1 adapted for electrotransformation of Porphyromonas gingivalis. J. Microbiol. Methods 105, 174–179 (2014).
pubmed: 25102110 doi: 10.1016/j.mimet.2014.07.032
Belanger, M., Rodrigues, P. & Progulske-Fox, A. Genetic manipulation of Porphyromonas gingivalis. Curr. Protoc. Microbiol. 5, 13C.2.1–13C.2.24 (2007).
doi: 10.1002/9780471729259.mc13c02s05
Smith, C. J. Genetic transformation of Bacteroides spp. using electroporation. Methods Mol. Biol 47, 161–169 (1995).
pubmed: 7550731
Filip, C., Fletcher, G., Wulff, J. L. & Earhart, C. F. Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J. Bacteriol. 115, 717–722 (1973).
pubmed: 4580564 pmcid: 246312 doi: 10.1128/jb.115.3.717-722.1973
Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).
pubmed: 7608087 pmcid: 177145 doi: 10.1128/jb.177.14.4121-4130.1995
Winter, G., Lobley, C. M. & Prince, S. M. Decision making in xia2. Acta Crystallogr. D 69, 1260–1273 (2013).
doi: 10.1107/S0907444913015308 pubmed: 23793152 pmcid: 3689529
Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. D 74, 85–97 (2018).
doi: 10.1107/S2059798317017235
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 19461840 pmcid: 2483472 doi: 10.1107/S0021889807021206
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
pubmed: 15572765 doi: 10.1107/S0907444904019158
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).
doi: 10.1107/S0907444912001308 pubmed: 22505256 pmcid: 3322595
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
pubmed: 20057044 doi: 10.1107/S0907444909042073
Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
pubmed: 23000701 pmcid: 3690530
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
pubmed: 30412051 pmcid: 6250425 doi: 10.7554/eLife.42166
Li, X., Zheng, S. Q., Egami, K., Agard, D. A. & Cheng, Y. Influence of electron dose rate on electron counting images recorded with the K2 camera. J. Struct. Biol. 184, 251–260 (2013).
pubmed: 23968652 doi: 10.1016/j.jsb.2013.08.005
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
pubmed: 26592709 pmcid: 4711343 doi: 10.1016/j.jsb.2015.11.003
Thompson, R. F., Iadanza, M. G., Hesketh, E. L., Rawson, S. & Ranson, N. A. Collection, pre-processing and on-the-fly analysis of data for high-resolution, single-particle cryo-electron microscopy. Nat. Protoc. 14, 100–118 (2019).
pubmed: 30487656 doi: 10.1038/s41596-018-0084-8
Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).
pubmed: 31240256 pmcid: 6584505 doi: 10.1038/s42003-019-0437-z
Petterson, E. F. et al. USCF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).
pubmed: 18351591 doi: 10.1002/jcc.20945
Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).
doi: 10.1016/j.softx.2015.06.001
Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ
pubmed: 23341755 pmcid: 3549273 doi: 10.1021/ct300400x
Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).
pubmed: 20496934 pmcid: 2922408 doi: 10.1021/jp101759q
Darden, T., York, D. & Pedersen, L. Particle mesh ewald: an N log (N) method for ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).
doi: 10.1063/1.464397
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).
doi: 10.1063/1.328693
Nosé, S. A. Molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).
doi: 10.1080/00268978400101201
Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985).
doi: 10.1103/PhysRevA.31.1695
Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).
doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
Tian, W., Chen, C., Lei, X., Zhao, J. & Liang, J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 46, W363–W367 (2018).
pubmed: 29860391 pmcid: 6031066 doi: 10.1093/nar/gky473

Auteurs

Mariusz Madej (M)

Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.

Joshua B R White (JBR)

Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
The Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA.

Zuzanna Nowakowska (Z)

Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.

Shaun Rawson (S)

Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
The Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA.

Carsten Scavenius (C)

Interdisciplinary Nanoscience Center (iNANO) and the Department of Molecular Biology, Aarhus University, Aarhus, Denmark.

Jan J Enghild (JJ)

Interdisciplinary Nanoscience Center (iNANO) and the Department of Molecular Biology, Aarhus University, Aarhus, Denmark.

Grzegorz P Bereta (GP)

Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.

Karunakar Pothula (K)

Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany.

Ulrich Kleinekathoefer (U)

Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany.

Arnaud Baslé (A)

Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK.

Neil A Ranson (NA)

Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK. n.a.ranson@leeds.ac.uk.

Jan Potempa (J)

Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland. jan.potempa@icloud.com.
Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA. jan.potempa@icloud.com.

Bert van den Berg (B)

Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK. bert.van-den-berg@ncl.ac.uk.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents

Classifications MeSH