Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis.
Journal
Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
02
09
2019
accepted:
31
03
2020
pubmed:
13
5
2020
medline:
18
11
2020
entrez:
13
5
2020
Statut:
ppublish
Résumé
Porphyromonas gingivalis, an asaccharolytic member of the Bacteroidetes, is a keystone pathogen in human periodontitis that may also contribute to the development of other chronic inflammatory diseases. P. gingivalis utilizes protease-generated peptides derived from extracellular proteins for growth, but how these peptides enter the cell is not clear. Here, we identify RagAB as the outer-membrane importer for these peptides. X-ray crystal structures show that the transporter forms a dimeric RagA
Identifiants
pubmed: 32393857
doi: 10.1038/s41564-020-0716-y
pii: 10.1038/s41564-020-0716-y
pmc: PMC7610489
mid: EMS118387
doi:
Substances chimiques
Bacterial Proteins
0
Membrane Transport Proteins
0
Oligopeptides
0
RagA protein, Porphyromonas gingivalis
0
RagB protein, bacteria
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1016-1025Subventions
Organisme : Wellcome Trust
ID : 108466
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 214222
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 215064/Z/18/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 108466/Z/15/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 214222/Z/18/Z
Pays : United Kingdom
Références
Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C. & Kent, R. L. Jr. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25, 134–144 (1998).
pubmed: 9495612
doi: 10.1111/j.1600-051X.1998.tb02419.x
Eke, P. I. et al. Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J. Periodontol. 86, 611–622 (2015).
pubmed: 25688694
pmcid: 4460825
doi: 10.1902/jop.2015.140520
Dominy, S. S. et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 5, eaau3333 (2019).
pubmed: 30746447
pmcid: 6357742
doi: 10.1126/sciadv.aau3333
Potempa, J., Mydel, P. & Koziel, J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 606–620 (2017).
pubmed: 28835673
doi: 10.1038/nrrheum.2017.132
Tonetti, M. S. et al. Treatment of periodontitis and endothelial function. N. Engl. J. Med. 356, 911–920 (2007).
pubmed: 17329698
doi: 10.1056/NEJMoa063186
Usher, A. K. & Stockley, R. A. The link between chronic periodontitis and COPD: a common role for the neutrophil? BMC Med. 11, 241 (2013).
pubmed: 24229090
pmcid: 4225606
doi: 10.1186/1741-7015-11-241
Bui, F. Q. et al. Association between periodontal pathogens and systemic disease. Biomed J. 42, 27–35 (2019).
pubmed: 30987702
pmcid: 6468093
doi: 10.1016/j.bj.2018.12.001
Mayrand, D. & Holt, S. C. Biology of asaccharolytic black-pigmented Bacteroides species. Microbiol. Rev. 52, 134–152 (1988).
pubmed: 3280965
pmcid: 372709
doi: 10.1128/mr.52.1.134-152.1988
Nemoto, T. K., Ohara-Nemoto, Y., Bezerra, G. A., Shimoyama, Y. & Kimura, S. A. Porphyromonas gingivalis periplasmic novel exopeptidase, acylpeptidyl oligopeptidase, releases N-acylated di- and tripeptides from oligopeptides. J. Biol. Chem. 291, 5913–5925 (2016).
pubmed: 26733202
pmcid: 4786725
doi: 10.1074/jbc.M115.687566
Potempa, J., Banbula, A. & Travis, J. Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontol. 2000 24, 153–192 (2000).
pubmed: 11276866
doi: 10.1034/j.1600-0757.2000.2240108.x
Grenier, D. et al. Role of gingipains in growth of Porphyromonas gingivalis in the presence of human serum albumin. Infect. Immun. 69, 5166–5172 (2001).
pubmed: 11447200
pmcid: 98614
doi: 10.1128/IAI.69.8.5166-5172.2001
Nagano, K. et al. Characterization of RagA and RagB in Porphyromonas gingivalis: study using gene-deletion mutants. J. Med. Microbiol. 56, 1536–1548 (2007).
pubmed: 17965357
doi: 10.1099/jmm.0.47289-0
Goulas, T. et al. Structure of RagB, a major immunodominant outer-membrane surface receptor antigen of Porphyromonas gingivalis. Mol. Oral Microbiol. 31, 472–485 (2016).
pubmed: 26441291
doi: 10.1111/omi.12140
Bolam, D. N. & van den Berg, B. TonB-dependent transport by the gut microbiota: novel aspects of an old problem. Curr. Opin. Struct. Biol. 51, 35–43 (2018).
pubmed: 29550504
doi: 10.1016/j.sbi.2018.03.001
Bolam, D. N. & Koropatkin, N. M. Glycan recognition by the Bacteroidetes Sus-like systems. Curr. Opin. Struct. Biol. 22, 563–569 (2012).
pubmed: 22819666
doi: 10.1016/j.sbi.2012.06.006
Glenwright, A. J. et al. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature 541, 407–411 (2017).
pubmed: 28077872
pmcid: 5497811
doi: 10.1038/nature20828
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
doi: 10.1016/j.jmb.2007.05.022
pubmed: 17681537
Noinaj, N., Guillier, M., Barnard, T. J. & Buchanan, S. K. TonB-dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64, 43–60 (2010).
pubmed: 20420522
pmcid: 3108441
doi: 10.1146/annurev.micro.112408.134247
Freed, D. M., Horanyi, P. S., Wiener, M. C. & Cafiso, D. S. Conformational exchange in a membrane transport protein is altered in protein crystals. Biophys. J. 99, 604–610 (2010).
doi: 10.1016/j.bpj.2010.06.026
Hickman, S. J., Cooper, R. E. M., Bellucci, L., Paci, E. & Brockwell, D. J. Gating of TonB-dependent transporters by substrate-specific forced remodelling. Nat. Commun. 8, 14804 (2017).
pubmed: 28429713
pmcid: 5413942
doi: 10.1038/ncomms14804
Gómez-Santos, N., Glatter, T., Koebnik, R., Swiątek-Połatyńska, M. A. & Søgaard-Andersen, L. A. TonB-dependent transporter is required for secretion of protease PopC across the bacterial outer membrane. Nat. Commun. 10, 1360 (2019).
pubmed: 30911012
pmcid: 6434023
doi: 10.1038/s41467-019-09366-9
Hall, L. M. et al. Sequence diversity and antigenic variation at the rag locus of Porphyromonas gingivalis. Infect. Immun. 73, 4253–4262 (2005).
pubmed: 15972517
pmcid: 1168617
doi: 10.1128/IAI.73.7.4253-4262.2005
Milner, P., Batten, J. E. & Curtis, M. A. Development of a simple chemically defined medium for Porphyromonas gingivalis: requirement for α-ketoglutarate. FEMS Microbiol. Lett 140, 125–130 (1996).
pubmed: 8764473
Grenier, D. et al. Role of gingipains in growth of Porphyromonas gingivalis in the presence of human serum albumin. Infect. Immun. 69, 5166–5172 (2001).
pubmed: 11447200
pmcid: 98614
doi: 10.1128/IAI.69.8.5166-5172.2001
Nagano, K. et al. Trimeric structure of major outer membrane proteins homologous to OmpA in Porphyromonas gingivalis. J. Bacteriol. 187, 902–911 (2005).
pubmed: 15659668
pmcid: 545718
doi: 10.1128/JB.187.3.902-911.2005
Lamster, I. B. & Ahio, J. K. Analysis of gingival crevicular fluid as applied to the diagnosis of oral and systemic diseases. Ann. NY Acad. Sci. 1098, 216–229 (2007).
pubmed: 17435131
doi: 10.1196/annals.1384.027
Curtis, M. A., Hanley, S. A. & Aduse-Opoku, J. The rag locus of Porphyromonas gingivalis: a novel pathogenicity island. J. Periodontal Res. 34, 400–405 (1999).
pubmed: 10685368
doi: 10.1111/j.1600-0765.1999.tb02273.x
Josts, I., Veith, K. & Tidow, H. Ternary structure of the outer membrane transporter FoxA with resolved signalling domain provides insights into TonB-mediated siderophore uptake. eLife 8, e48528 (2019).
pubmed: 31385808
pmcid: 6699858
doi: 10.7554/eLife.48528
Kim, I., Stiefel, A., Plantör, S., Angerer, A. & Braun, V. Transcription induction of the ferric citrate transport genes via the N-terminus of the FecA outer membrane protein, the Ton system and the electrochemical potential of the cytoplasmic membrane. Mol. Microbiol. 23, 333–344 (1997).
pubmed: 9044267
doi: 10.1046/j.1365-2958.1997.2401593.x
Braun, V., Mahren, S. & Ogierman, M. Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Curr. Opin. Microbiol. 6, 173–180 (2003).
pubmed: 12732308
doi: 10.1016/S1369-5274(03)00022-5
Koebnik, R. TonB-dependent trans-envelope signalling: the exception or the rule? Trends Microbiol. 13, 343–347 (2005).
pubmed: 15993072
doi: 10.1016/j.tim.2005.06.005
Ho, M. H., Lamont, R. J. & Xie, H. Identification of Streptococcus cristatus peptides that repress expression of virulence genes in Porphyromonas gingivalis. Sci. Rep. 7, 1413 (2017).
pubmed: 28469253
pmcid: 5431200
doi: 10.1038/s41598-017-01551-4
Moynié, L. et al. The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. Nat. Commun. 10, 3673 (2019).
pubmed: 31413254
pmcid: 6694100
doi: 10.1038/s41467-019-11508-y
Balhesteros, H. et al. TonB-Dependent Heme/Hemoglobin Utilization by Caulobacter crescentus HutA. J. Bacteriol. 199, e00723–16 (2017).
pubmed: 28031282
pmcid: 5331666
doi: 10.1128/JB.00723-16
Koropatkin, N. M., Martens, E. C., Gordon, J. I. & Smith, T. J. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16, 1105–1115 (2008).
pubmed: 18611383
pmcid: 2563962
doi: 10.1016/j.str.2008.03.017
Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat Commun. 6, 7481 (2015).
pubmed: 26112186
doi: 10.1038/ncomms8481
Nguyen, K. A., Travis, J. & Potempa, J. Does the importance of the C-terminal residues in the maturation of RgpB from Porphyromonas gingivalis reveal a novel mechanism for protein export in a subgroup of Gram-negative bacteria? J. Bacteriol. 189, 833–843 (2007).
pubmed: 17142394
doi: 10.1128/JB.01530-06
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
pubmed: 19363495
Chiu, J., March, P. E., Lee, R. & Tillett, D. Site-directed, ligase-independent mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res. 32, e174 (2004).
pubmed: 15585660
pmcid: 535700
doi: 10.1093/nar/gnh172
Tagawa, J. et al. Development of a novel plasmid vector pTIO-1 adapted for electrotransformation of Porphyromonas gingivalis. J. Microbiol. Methods 105, 174–179 (2014).
pubmed: 25102110
doi: 10.1016/j.mimet.2014.07.032
Belanger, M., Rodrigues, P. & Progulske-Fox, A. Genetic manipulation of Porphyromonas gingivalis. Curr. Protoc. Microbiol. 5, 13C.2.1–13C.2.24 (2007).
doi: 10.1002/9780471729259.mc13c02s05
Smith, C. J. Genetic transformation of Bacteroides spp. using electroporation. Methods Mol. Biol 47, 161–169 (1995).
pubmed: 7550731
Filip, C., Fletcher, G., Wulff, J. L. & Earhart, C. F. Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J. Bacteriol. 115, 717–722 (1973).
pubmed: 4580564
pmcid: 246312
doi: 10.1128/jb.115.3.717-722.1973
Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).
pubmed: 7608087
pmcid: 177145
doi: 10.1128/jb.177.14.4121-4130.1995
Winter, G., Lobley, C. M. & Prince, S. M. Decision making in xia2. Acta Crystallogr. D 69, 1260–1273 (2013).
doi: 10.1107/S0907444913015308
pubmed: 23793152
pmcid: 3689529
Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. D 74, 85–97 (2018).
doi: 10.1107/S2059798317017235
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 19461840
pmcid: 2483472
doi: 10.1107/S0021889807021206
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
pubmed: 15572765
doi: 10.1107/S0907444904019158
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).
doi: 10.1107/S0907444912001308
pubmed: 22505256
pmcid: 3322595
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702
pmcid: 2815670
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
pubmed: 20057044
doi: 10.1107/S0907444909042073
Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
pubmed: 23000701
pmcid: 3690530
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
pubmed: 30412051
pmcid: 6250425
doi: 10.7554/eLife.42166
Li, X., Zheng, S. Q., Egami, K., Agard, D. A. & Cheng, Y. Influence of electron dose rate on electron counting images recorded with the K2 camera. J. Struct. Biol. 184, 251–260 (2013).
pubmed: 23968652
doi: 10.1016/j.jsb.2013.08.005
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
pubmed: 26592709
pmcid: 4711343
doi: 10.1016/j.jsb.2015.11.003
Thompson, R. F., Iadanza, M. G., Hesketh, E. L., Rawson, S. & Ranson, N. A. Collection, pre-processing and on-the-fly analysis of data for high-resolution, single-particle cryo-electron microscopy. Nat. Protoc. 14, 100–118 (2019).
pubmed: 30487656
doi: 10.1038/s41596-018-0084-8
Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).
pubmed: 31240256
pmcid: 6584505
doi: 10.1038/s42003-019-0437-z
Petterson, E. F. et al. USCF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).
pubmed: 18351591
doi: 10.1002/jcc.20945
Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).
doi: 10.1016/j.softx.2015.06.001
Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ
pubmed: 23341755
pmcid: 3549273
doi: 10.1021/ct300400x
Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).
pubmed: 20496934
pmcid: 2922408
doi: 10.1021/jp101759q
Darden, T., York, D. & Pedersen, L. Particle mesh ewald: an N log (N) method for ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).
doi: 10.1063/1.464397
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).
doi: 10.1063/1.328693
Nosé, S. A. Molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).
doi: 10.1080/00268978400101201
Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985).
doi: 10.1103/PhysRevA.31.1695
Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).
doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
Tian, W., Chen, C., Lei, X., Zhao, J. & Liang, J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 46, W363–W367 (2018).
pubmed: 29860391
pmcid: 6031066
doi: 10.1093/nar/gky473