Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products.


Journal

Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976

Informations de publication

Date de publication:
07 2020
Historique:
received: 28 08 2019
accepted: 06 04 2020
pubmed: 13 5 2020
medline: 9 10 2020
entrez: 13 5 2020
Statut: ppublish

Résumé

Leukotrienes (LT) are lipid mediators of the inflammatory response that are linked to asthma and atherosclerosis. LT biosynthesis is initiated by 5-lipoxygenase (5-LOX) with the assistance of the substrate-binding 5-LOX-activating protein at the nuclear membrane. Here, we contrast the structural and functional consequences of the binding of two natural product inhibitors of 5-LOX. The redox-type inhibitor nordihydroguaiaretic acid (NDGA) is lodged in the 5-LOX active site, now fully exposed by disordering of the helix that caps it in the apo-enzyme. In contrast, the allosteric inhibitor 3-acetyl-11-keto-beta-boswellic acid (AKBA) from frankincense wedges between the membrane-binding and catalytic domains of 5-LOX, some 30 Å from the catalytic iron. While enzyme inhibition by NDGA is robust, AKBA promotes a shift in the regiospecificity, evident in human embryonic kidney 293 cells and in primary immune cells expressing 5-LOX. Our results suggest a new approach to isoform-specific 5-LOX inhibitor development through exploitation of an allosteric site in 5-LOX.

Identifiants

pubmed: 32393899
doi: 10.1038/s41589-020-0544-7
pii: 10.1038/s41589-020-0544-7
pmc: PMC7747934
mid: NIHMS1651461
doi:

Substances chimiques

Biological Products 0
Hydroxyeicosatetraenoic Acids 0
Lipoxygenase Inhibitors 0
Recombinant Proteins 0
Triterpenes 0
acetyl-11-ketoboswellic acid 0
Leukotriene B4 1HGW4DR56D
5-hydroxy-6,8,11,14-eicosatetraenoic acid 467RNW8T91
Masoprocol 7BO8G1BYQU
Arachidonate 5-Lipoxygenase EC 1.13.11.34
ALOX5 protein, human EC 1.3.11.34

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

783-790

Subventions

Organisme : NIGMS NIH HHS
ID : P30 GM124165
Pays : United States
Organisme : NCCIH NIH HHS
ID : P50 AT002776
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL107887
Pays : United States
Organisme : NIH HHS
ID : S10 OD021527
Pays : United States

Commentaires et corrections

Type : CommentIn

Références

Haeggstrom, J. Z. & Funk, C. D. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem. Rev. 111, 5866–5898 (2011).
pubmed: 21936577 doi: 10.1021/cr200246d
Radmark, O., Werz, O., Steinhilber, D. & Samuelsson, B. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys. Acta 1851, 331–339 (2015).
pubmed: 25152163 doi: 10.1016/j.bbalip.2014.08.012
Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).
pubmed: 24899309 pmcid: 4263681 doi: 10.1038/nature13479
Shimizu, T. et al. Characterization of leukotriene A4 synthase from murine mast cells: evidence for its identity to arachidonate 5-lipoxygenase. Proc. Natl Acad. Sci. USA 83, 4175–4179 (1986).
pubmed: 3012557 doi: 10.1073/pnas.83.12.4175
Dixon, R. A. F. et al. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 343, 282–284 (1990).
pubmed: 2300173 doi: 10.1038/343282a0
Ferguson, A. D. et al. Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein. Science 317, 510–512 (2007).
pubmed: 17600184 doi: 10.1126/science.1144346
Vickers, P. J., Deluca, C., Wong, E. & Abramovitz, M. The effect of 5-lipoxygenase-activating protein (FLAP) on substrate utilization by 5-lipoxygenase. Adv. Exp. Med Biol. 400A, 145–151 (1997).
pubmed: 9547550 doi: 10.1007/978-1-4615-5325-0_21
Abramovitz, M. et al. 5-lipoxygenase-activating protein stimulates the utilization of arachidonic acid by 5-lipoxygenase. Eur. J. Biochem 215, 105–111 (1993).
pubmed: 8344271 doi: 10.1111/j.1432-1033.1993.tb18012.x
Evans, J. F., Ferguson, A. D., Mosley, R. T. & Hutchinson, J. H. What’s all the FLAP about?: 5-lipoxygenase-activating protein inhibitors for inflammatory diseases. Trends Pharm. Sci. 29, 72–78 (2008).
pubmed: 18187210 doi: 10.1016/j.tips.2007.11.006
Werz, O., Gerstmeier, J. & Garscha, U. Novel leukotriene biosynthesis inhibitors (2012-2016) as anti-inflammatory agents. Expert Opin. therapeutic Pat. 27, 607–620 (2017).
doi: 10.1080/13543776.2017.1276568
Pettersen, D., Davidsson, O. & Whatling, C. Recent advances for FLAP inhibitors. Bioorg. Med Chem. Lett. 25, 2607–2612 (2015).
pubmed: 26004579 doi: 10.1016/j.bmcl.2015.04.090
Funk, C. D., Chen, X. S., Johnson, E. N. & Zhao, L. Lipoxygenase genes and their targeted disruption. Prostaglandins Other Lipid Mediat. 68-69, 303–312 (2002).
pubmed: 12432925 doi: 10.1016/S0090-6980(02)00036-9
Schneider, C., Pratt, D. A., Porter, N. A. & Brash, A. R. Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem. Biol. 14, 473–488 (2007).
pubmed: 17524979 pmcid: 2692746 doi: 10.1016/j.chembiol.2007.04.007
Brash, A. R. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J. Biol. Chem. 274, 23679–23682 (1999).
pubmed: 10446122 doi: 10.1074/jbc.274.34.23679
Neau, D. B. et al. Crystal structure of a lipoxygenase in complex with substrate: the arachidonic acid-binding site of 8R-lipoxygenase. J. Biol. Chem. 289, 31905–31913 (2014).
pubmed: 25231982 pmcid: 4231669 doi: 10.1074/jbc.M114.599662
Newcomer, M. E. & Brash, A. R. The structural basis for specificity in lipoxygenase catalysis. Protein Sci. 24, 298–309 (2015).
pubmed: 25524168 pmcid: 4353356 doi: 10.1002/pro.2626
Gilbert, N. C. et al. The structure of human 5-lipoxygenase. Science 331, 217–219 (2011).
pubmed: 21233389 pmcid: 3245680 doi: 10.1126/science.1197203
Bokoch, G. M. & Reed, P. W. Evidence for inhibition of leukotriene A4 synthesis by 5,8,11,14-eicosatetraynoic acid in guinea pig polymorphonuclear leukocytes. J. Biol. Chem. 256, 4156–4159 (1981).
pubmed: 6260789
Safayhi, H., Sailer, E. R. & Ammon, H. P. Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid. Mol. Pharm. 47, 1212–1216 (1995).
Sailer, E. R., Schweizer, S., Boden, S. E., Ammon, H. P. & Safayhi, H. Characterization of an acetyl-11-keto-beta-boswellic acid and arachidonate-binding regulatory site of 5-lipoxygenase using photoaffinity labeling. Eur. J. Biochem 256, 364–368 (1998).
pubmed: 9760176 doi: 10.1046/j.1432-1327.1998.2560364.x
Poeckel, D. & Werz, O. Boswellic acids: biological actions and molecular targets. Curr. Med. Chem. 13, 3359–3369 (2006).
pubmed: 17168710 doi: 10.2174/092986706779010333
Abdel-Tawab, M., Werz, O. & Schubert-Zsilavecz, M. Boswellia serrata: an overall assessment of in vitro, preclinical, pharmacokinetic and clinical data. Clin. Pharmacokinet. 50, 349–369 (2011).
pubmed: 21553931 doi: 10.2165/11586800-000000000-00000
Sturner, K. H. et al. A standardised frankincense extract reduces disease activity in relapsing-remitting multiple sclerosis (the SABA phase IIa trial). J. Neurol. Neurosurg. Psychiatry 89, 330–338 (2017).
Werz, O. & Steinhilber, D. Development of 5-lipoxygenase inhibitors–lessons from cellular enzyme regulation. Biochem Pharm. 70, 327–333 (2005).
pubmed: 15907806 doi: 10.1016/j.bcp.2005.04.018
Kemal, C., Louis-Flamberg, P., Krupinski-Olsen, R. & Shorter, A. L. Reductive inactivation of soybean lipoxygenase 1 by catechols: a possible mechanism for regulation of lipoxygenase activity. Biochemistry 26, 7064–7072 (1987).
pubmed: 3122826 doi: 10.1021/bi00396a031
Mitra, S., Bartlett, S. G. & Newcomer, M. E. Identification of the substrate access portal of 5-lipoxygenase. Biochemistry 54, 6333–6342 (2015).
Schexnaydre, E. E. et al. A 5-lipoxygenase-specific sequence motif impedes enzyme activity and confers dependence on a partner protein. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 543–551 (2018).
Ericsson, U. B., Hallberg, B. M., Detitta, G. T., Dekker, N. & Nordlund, P. Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem 357, 289–298 (2006).
pubmed: 16962548 doi: 10.1016/j.ab.2006.07.027
Eek, P. et al. Structure of a calcium-dependent 11R-lipoxygenase suggests a mechanism for Ca
pubmed: 22573333 pmcid: 3381197 doi: 10.1074/jbc.M112.343285
Rakonjac Ryge, M. et al. A mutation interfering with 5-lipoxygenase domain interaction leads to increased enzyme activity. Arch. Biochem Biophys. 545, 179–185 (2014).
pubmed: 24480307 doi: 10.1016/j.abb.2014.01.017
Werz, O. Inhibition of 5-lipoxygenase product synthesis by natural compounds of plant origin. Planta Med. 73, 1331–1357 (2007).
pubmed: 17939102 doi: 10.1055/s-2007-990242
Gerstmeier, J., Weinigel, C., Barz, D., Werz, O. & Garscha, U. An experimental cell-based model for studying the cell biology and molecular pharmacology of 5-lipoxygenase-activating protein in leukotriene biosynthesis. Biochim Biophys. Acta 1840, 2961–2969 (2014).
pubmed: 24905297 doi: 10.1016/j.bbagen.2014.05.016
Werner, M. et al. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome. FASEB J. 33, 6140–6153 (2019).
pubmed: 30735438 pmcid: 6988863 doi: 10.1096/fj.201802509R
Siemoneit, U. et al. On the interference of boswellic acids with 5-lipoxygenase: mechanistic studies in vitro and pharmacological relevance. Eur. J. Pharm. 606, 246–254 (2009).
doi: 10.1016/j.ejphar.2009.01.044
Surette, M. E., Palmantier, R., Gosselin, J. & Borgeat, P. Lipopolysaccharides prime whole human blood and isolated neutrophils for the increased synthesis of 5-lipoxygenase products by enhancing arachidonic acid availability: involvement of the CD14 antigen. J. Exp. Med 178, 1347–1355 (1993).
pubmed: 7690833 doi: 10.1084/jem.178.4.1347
Werz, O. et al. Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity. Nat. Commun. 9, 59 (2018).
pubmed: 29302056 pmcid: 5754355 doi: 10.1038/s41467-017-02538-5
Deng, B. et al. Maresin biosynthesis and identification of maresin 2, a new anti-inflammatory and pro-resolving mediator from human macrophages. PLoS ONE 9, e102362 (2014).
pubmed: 25036362 pmcid: 4103848 doi: 10.1371/journal.pone.0102362
Carion, T. W. et al. Immunoregulatory role of 15-lipoxygenase in the pathogenesis of bacterial keratitis. FASEB J. 32, 5026–5038 (2018).
pubmed: 29913556 pmcid: 6103176 doi: 10.1096/fj.201701502R
Sailer, E. R. et al. Acetyl-11-keto-beta-boswellic acid (AKBA): structure requirements for binding and 5-lipoxygenase inhibitory activity. Br. J. Pharm. 117, 615–618 (1996).
doi: 10.1111/j.1476-5381.1996.tb15235.x
Gillmor, S. A., Villasenor, A., Fletterick, R., Sigal, E. & Browner, M. F. The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. Nat. Struct. Biol. 4, 1003–1009 (1997); erratum 5, 242 (1998).
Choi, J., Chon, J. K., Kim, S. & Shin, W. Conformational flexibility in mammalian 15S-lipoxygenase: Reinterpretation of the crystallographic data. Proteins 70, 1023–1032 (2008).
pubmed: 17847087 doi: 10.1002/prot.21590
Kobe, M. J., Neau, D. B., Mitchell, C. E., Bartlett, S. G. & Newcomer, M. E. The structure of human 15-lipoxygenase-2 with a substrate mimic. J. Biol. Chem. 289, 8562–8569 (2014).
pubmed: 24497644 pmcid: 3961679 doi: 10.1074/jbc.M113.543777
Mandal, A. K. et al. The membrane organization of leukotriene synthesis. Proc. Natl Acad. Sci. USA 101, 6587–6592 (2004).
pubmed: 15084748 doi: 10.1073/pnas.0308523101
Mandal, A. K. et al. The nuclear membrane organization of leukotriene synthesis. Proc. Natl Acad. Sci. USA 105, 20434–20439 (2008).
pubmed: 19075240 doi: 10.1073/pnas.0808211106
Gerstmeier, J. et al. 5-Lipoxygenase-activating protein rescues activity of 5-lipoxygenase mutations that delay nuclear membrane association and disrupt product formation. FASEB J. 30, 1892–1900 (2016).
pubmed: 26842853 pmcid: 4836370 doi: 10.1096/fj.201500210R
Neau, D. B. et al. The 1.85 A structure of an 8R-lipoxygenase suggests a general model for lipoxygenase product specificity. Biochemistry 48, 7906–7915 (2009).
pubmed: 19594169 pmcid: 4715880 doi: 10.1021/bi900084m
Murphy, R. C. & Gijon, M. A. Biosynthesis and metabolism of leukotrienes. Biochem J. 405, 379–395 (2007).
pubmed: 17623009 doi: 10.1042/BJ20070289
Flamand, N., Luo, M., Peters-Golden, M. & Brock, T. G. Phosphorylation of serine 271 on 5-lipoxygenase and its role in nuclear export. J. Biol. Chem. 284, 306–313 (2009).
pubmed: 18978352 pmcid: 2610501 doi: 10.1074/jbc.M805593200
Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).
pubmed: 21919503 doi: 10.1021/ci200227u
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 pmcid: 15264254 doi: 10.1002/jcc.20084
Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
pubmed: 2815665 pmcid: 2815665 doi: 10.1107/S0907444909047337
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).
pubmed: 3689523 pmcid: 3689523 doi: 10.1107/S0907444913000061
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702 pmcid: 20124702 doi: 10.1107/S0907444909052925
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 2483472 pmcid: 2483472 doi: 10.1107/S0021889807021206
Schweizer, S., Eichele, K., Ammon, H. P. & Safayhi, H. 3-Acetoxy group of genuine AKBA (acetyl-11-keto-beta-boswellic acid) is alpha-configurated. Planta Med. 66, 781–782 (2000).
pubmed: 11199146 doi: 10.1055/s-2000-9614
Zwart, P. H. et al. Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419–435 (2008).
pubmed: 18542881 doi: 10.1007/978-1-60327-058-8_28
Dauter, Z., Li, M. & Wlodawer, A. Practical experience with the use of halides for phasing macromolecular structures: a powerful tool for structural genomics. Acta Crystallogr. D Biol. Crystallogr. 57, 239–249 (2001).
pubmed: 11173470 doi: 10.1107/S0907444900015249
Parsons, S. Introduction to twinning. Acta Crystallogr. D Biol. Crystallogr. 59, 1995–2003 (2003).
pubmed: 14573955 doi: 10.1107/S0907444903017657
Wang, C. K., Weeratunga, S. K., Pacheco, C. M. & Hofmann, A. DMAN: a Java tool for analysis of multi-well differential scanning fluorimetry experiments. Bioinformatics 28, 439–440 (2012).
pubmed: 22135419 doi: 10.1093/bioinformatics/btr664
Fischer, L., Szellas, D., Radmark, O., Steinhilber, D. & Werz, O. Phosphorylation- and stimulus-dependent inhibition of cellular 5-lipoxygenase activity by nonredox-type inhibitors. FASEB J. 17, 949–951 (2003).
pubmed: 12670876

Auteurs

Nathaniel C Gilbert (NC)

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.

Jana Gerstmeier (J)

Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.

Erin E Schexnaydre (EE)

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.

Friedemann Börner (F)

Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.

Ulrike Garscha (U)

Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.

David B Neau (DB)

Cornell University, Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, IL, USA.

Oliver Werz (O)

Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany. oliver.werz@uni-jena.de.

Marcia E Newcomer (ME)

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA. newcomer@lsu.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH