Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products.
Allosteric Site
Arachidonate 5-Lipoxygenase
/ chemistry
Biological Products
/ chemistry
Catalytic Domain
Cloning, Molecular
Crystallography, X-Ray
Escherichia coli
/ genetics
Gene Expression
Genetic Vectors
/ chemistry
Humans
Hydroxyeicosatetraenoic Acids
/ chemistry
Leukotriene B4
/ chemistry
Lipoxygenase Inhibitors
/ chemistry
Masoprocol
/ chemistry
Models, Molecular
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Interaction Domains and Motifs
Protein Multimerization
Recombinant Proteins
/ chemistry
Substrate Specificity
Triterpenes
/ chemistry
Journal
Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
28
08
2019
accepted:
06
04
2020
pubmed:
13
5
2020
medline:
9
10
2020
entrez:
13
5
2020
Statut:
ppublish
Résumé
Leukotrienes (LT) are lipid mediators of the inflammatory response that are linked to asthma and atherosclerosis. LT biosynthesis is initiated by 5-lipoxygenase (5-LOX) with the assistance of the substrate-binding 5-LOX-activating protein at the nuclear membrane. Here, we contrast the structural and functional consequences of the binding of two natural product inhibitors of 5-LOX. The redox-type inhibitor nordihydroguaiaretic acid (NDGA) is lodged in the 5-LOX active site, now fully exposed by disordering of the helix that caps it in the apo-enzyme. In contrast, the allosteric inhibitor 3-acetyl-11-keto-beta-boswellic acid (AKBA) from frankincense wedges between the membrane-binding and catalytic domains of 5-LOX, some 30 Å from the catalytic iron. While enzyme inhibition by NDGA is robust, AKBA promotes a shift in the regiospecificity, evident in human embryonic kidney 293 cells and in primary immune cells expressing 5-LOX. Our results suggest a new approach to isoform-specific 5-LOX inhibitor development through exploitation of an allosteric site in 5-LOX.
Identifiants
pubmed: 32393899
doi: 10.1038/s41589-020-0544-7
pii: 10.1038/s41589-020-0544-7
pmc: PMC7747934
mid: NIHMS1651461
doi:
Substances chimiques
Biological Products
0
Hydroxyeicosatetraenoic Acids
0
Lipoxygenase Inhibitors
0
Recombinant Proteins
0
Triterpenes
0
acetyl-11-ketoboswellic acid
0
Leukotriene B4
1HGW4DR56D
5-hydroxy-6,8,11,14-eicosatetraenoic acid
467RNW8T91
Masoprocol
7BO8G1BYQU
Arachidonate 5-Lipoxygenase
EC 1.13.11.34
ALOX5 protein, human
EC 1.3.11.34
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
783-790Subventions
Organisme : NIGMS NIH HHS
ID : P30 GM124165
Pays : United States
Organisme : NCCIH NIH HHS
ID : P50 AT002776
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL107887
Pays : United States
Organisme : NIH HHS
ID : S10 OD021527
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
Haeggstrom, J. Z. & Funk, C. D. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem. Rev. 111, 5866–5898 (2011).
pubmed: 21936577
doi: 10.1021/cr200246d
Radmark, O., Werz, O., Steinhilber, D. & Samuelsson, B. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys. Acta 1851, 331–339 (2015).
pubmed: 25152163
doi: 10.1016/j.bbalip.2014.08.012
Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).
pubmed: 24899309
pmcid: 4263681
doi: 10.1038/nature13479
Shimizu, T. et al. Characterization of leukotriene A4 synthase from murine mast cells: evidence for its identity to arachidonate 5-lipoxygenase. Proc. Natl Acad. Sci. USA 83, 4175–4179 (1986).
pubmed: 3012557
doi: 10.1073/pnas.83.12.4175
Dixon, R. A. F. et al. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 343, 282–284 (1990).
pubmed: 2300173
doi: 10.1038/343282a0
Ferguson, A. D. et al. Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein. Science 317, 510–512 (2007).
pubmed: 17600184
doi: 10.1126/science.1144346
Vickers, P. J., Deluca, C., Wong, E. & Abramovitz, M. The effect of 5-lipoxygenase-activating protein (FLAP) on substrate utilization by 5-lipoxygenase. Adv. Exp. Med Biol. 400A, 145–151 (1997).
pubmed: 9547550
doi: 10.1007/978-1-4615-5325-0_21
Abramovitz, M. et al. 5-lipoxygenase-activating protein stimulates the utilization of arachidonic acid by 5-lipoxygenase. Eur. J. Biochem 215, 105–111 (1993).
pubmed: 8344271
doi: 10.1111/j.1432-1033.1993.tb18012.x
Evans, J. F., Ferguson, A. D., Mosley, R. T. & Hutchinson, J. H. What’s all the FLAP about?: 5-lipoxygenase-activating protein inhibitors for inflammatory diseases. Trends Pharm. Sci. 29, 72–78 (2008).
pubmed: 18187210
doi: 10.1016/j.tips.2007.11.006
Werz, O., Gerstmeier, J. & Garscha, U. Novel leukotriene biosynthesis inhibitors (2012-2016) as anti-inflammatory agents. Expert Opin. therapeutic Pat. 27, 607–620 (2017).
doi: 10.1080/13543776.2017.1276568
Pettersen, D., Davidsson, O. & Whatling, C. Recent advances for FLAP inhibitors. Bioorg. Med Chem. Lett. 25, 2607–2612 (2015).
pubmed: 26004579
doi: 10.1016/j.bmcl.2015.04.090
Funk, C. D., Chen, X. S., Johnson, E. N. & Zhao, L. Lipoxygenase genes and their targeted disruption. Prostaglandins Other Lipid Mediat. 68-69, 303–312 (2002).
pubmed: 12432925
doi: 10.1016/S0090-6980(02)00036-9
Schneider, C., Pratt, D. A., Porter, N. A. & Brash, A. R. Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem. Biol. 14, 473–488 (2007).
pubmed: 17524979
pmcid: 2692746
doi: 10.1016/j.chembiol.2007.04.007
Brash, A. R. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J. Biol. Chem. 274, 23679–23682 (1999).
pubmed: 10446122
doi: 10.1074/jbc.274.34.23679
Neau, D. B. et al. Crystal structure of a lipoxygenase in complex with substrate: the arachidonic acid-binding site of 8R-lipoxygenase. J. Biol. Chem. 289, 31905–31913 (2014).
pubmed: 25231982
pmcid: 4231669
doi: 10.1074/jbc.M114.599662
Newcomer, M. E. & Brash, A. R. The structural basis for specificity in lipoxygenase catalysis. Protein Sci. 24, 298–309 (2015).
pubmed: 25524168
pmcid: 4353356
doi: 10.1002/pro.2626
Gilbert, N. C. et al. The structure of human 5-lipoxygenase. Science 331, 217–219 (2011).
pubmed: 21233389
pmcid: 3245680
doi: 10.1126/science.1197203
Bokoch, G. M. & Reed, P. W. Evidence for inhibition of leukotriene A4 synthesis by 5,8,11,14-eicosatetraynoic acid in guinea pig polymorphonuclear leukocytes. J. Biol. Chem. 256, 4156–4159 (1981).
pubmed: 6260789
Safayhi, H., Sailer, E. R. & Ammon, H. P. Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid. Mol. Pharm. 47, 1212–1216 (1995).
Sailer, E. R., Schweizer, S., Boden, S. E., Ammon, H. P. & Safayhi, H. Characterization of an acetyl-11-keto-beta-boswellic acid and arachidonate-binding regulatory site of 5-lipoxygenase using photoaffinity labeling. Eur. J. Biochem 256, 364–368 (1998).
pubmed: 9760176
doi: 10.1046/j.1432-1327.1998.2560364.x
Poeckel, D. & Werz, O. Boswellic acids: biological actions and molecular targets. Curr. Med. Chem. 13, 3359–3369 (2006).
pubmed: 17168710
doi: 10.2174/092986706779010333
Abdel-Tawab, M., Werz, O. & Schubert-Zsilavecz, M. Boswellia serrata: an overall assessment of in vitro, preclinical, pharmacokinetic and clinical data. Clin. Pharmacokinet. 50, 349–369 (2011).
pubmed: 21553931
doi: 10.2165/11586800-000000000-00000
Sturner, K. H. et al. A standardised frankincense extract reduces disease activity in relapsing-remitting multiple sclerosis (the SABA phase IIa trial). J. Neurol. Neurosurg. Psychiatry 89, 330–338 (2017).
Werz, O. & Steinhilber, D. Development of 5-lipoxygenase inhibitors–lessons from cellular enzyme regulation. Biochem Pharm. 70, 327–333 (2005).
pubmed: 15907806
doi: 10.1016/j.bcp.2005.04.018
Kemal, C., Louis-Flamberg, P., Krupinski-Olsen, R. & Shorter, A. L. Reductive inactivation of soybean lipoxygenase 1 by catechols: a possible mechanism for regulation of lipoxygenase activity. Biochemistry 26, 7064–7072 (1987).
pubmed: 3122826
doi: 10.1021/bi00396a031
Mitra, S., Bartlett, S. G. & Newcomer, M. E. Identification of the substrate access portal of 5-lipoxygenase. Biochemistry 54, 6333–6342 (2015).
Schexnaydre, E. E. et al. A 5-lipoxygenase-specific sequence motif impedes enzyme activity and confers dependence on a partner protein. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 543–551 (2018).
Ericsson, U. B., Hallberg, B. M., Detitta, G. T., Dekker, N. & Nordlund, P. Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem 357, 289–298 (2006).
pubmed: 16962548
doi: 10.1016/j.ab.2006.07.027
Eek, P. et al. Structure of a calcium-dependent 11R-lipoxygenase suggests a mechanism for Ca
pubmed: 22573333
pmcid: 3381197
doi: 10.1074/jbc.M112.343285
Rakonjac Ryge, M. et al. A mutation interfering with 5-lipoxygenase domain interaction leads to increased enzyme activity. Arch. Biochem Biophys. 545, 179–185 (2014).
pubmed: 24480307
doi: 10.1016/j.abb.2014.01.017
Werz, O. Inhibition of 5-lipoxygenase product synthesis by natural compounds of plant origin. Planta Med. 73, 1331–1357 (2007).
pubmed: 17939102
doi: 10.1055/s-2007-990242
Gerstmeier, J., Weinigel, C., Barz, D., Werz, O. & Garscha, U. An experimental cell-based model for studying the cell biology and molecular pharmacology of 5-lipoxygenase-activating protein in leukotriene biosynthesis. Biochim Biophys. Acta 1840, 2961–2969 (2014).
pubmed: 24905297
doi: 10.1016/j.bbagen.2014.05.016
Werner, M. et al. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome. FASEB J. 33, 6140–6153 (2019).
pubmed: 30735438
pmcid: 6988863
doi: 10.1096/fj.201802509R
Siemoneit, U. et al. On the interference of boswellic acids with 5-lipoxygenase: mechanistic studies in vitro and pharmacological relevance. Eur. J. Pharm. 606, 246–254 (2009).
doi: 10.1016/j.ejphar.2009.01.044
Surette, M. E., Palmantier, R., Gosselin, J. & Borgeat, P. Lipopolysaccharides prime whole human blood and isolated neutrophils for the increased synthesis of 5-lipoxygenase products by enhancing arachidonic acid availability: involvement of the CD14 antigen. J. Exp. Med 178, 1347–1355 (1993).
pubmed: 7690833
doi: 10.1084/jem.178.4.1347
Werz, O. et al. Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity. Nat. Commun. 9, 59 (2018).
pubmed: 29302056
pmcid: 5754355
doi: 10.1038/s41467-017-02538-5
Deng, B. et al. Maresin biosynthesis and identification of maresin 2, a new anti-inflammatory and pro-resolving mediator from human macrophages. PLoS ONE 9, e102362 (2014).
pubmed: 25036362
pmcid: 4103848
doi: 10.1371/journal.pone.0102362
Carion, T. W. et al. Immunoregulatory role of 15-lipoxygenase in the pathogenesis of bacterial keratitis. FASEB J. 32, 5026–5038 (2018).
pubmed: 29913556
pmcid: 6103176
doi: 10.1096/fj.201701502R
Sailer, E. R. et al. Acetyl-11-keto-beta-boswellic acid (AKBA): structure requirements for binding and 5-lipoxygenase inhibitory activity. Br. J. Pharm. 117, 615–618 (1996).
doi: 10.1111/j.1476-5381.1996.tb15235.x
Gillmor, S. A., Villasenor, A., Fletterick, R., Sigal, E. & Browner, M. F. The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. Nat. Struct. Biol. 4, 1003–1009 (1997); erratum 5, 242 (1998).
Choi, J., Chon, J. K., Kim, S. & Shin, W. Conformational flexibility in mammalian 15S-lipoxygenase: Reinterpretation of the crystallographic data. Proteins 70, 1023–1032 (2008).
pubmed: 17847087
doi: 10.1002/prot.21590
Kobe, M. J., Neau, D. B., Mitchell, C. E., Bartlett, S. G. & Newcomer, M. E. The structure of human 15-lipoxygenase-2 with a substrate mimic. J. Biol. Chem. 289, 8562–8569 (2014).
pubmed: 24497644
pmcid: 3961679
doi: 10.1074/jbc.M113.543777
Mandal, A. K. et al. The membrane organization of leukotriene synthesis. Proc. Natl Acad. Sci. USA 101, 6587–6592 (2004).
pubmed: 15084748
doi: 10.1073/pnas.0308523101
Mandal, A. K. et al. The nuclear membrane organization of leukotriene synthesis. Proc. Natl Acad. Sci. USA 105, 20434–20439 (2008).
pubmed: 19075240
doi: 10.1073/pnas.0808211106
Gerstmeier, J. et al. 5-Lipoxygenase-activating protein rescues activity of 5-lipoxygenase mutations that delay nuclear membrane association and disrupt product formation. FASEB J. 30, 1892–1900 (2016).
pubmed: 26842853
pmcid: 4836370
doi: 10.1096/fj.201500210R
Neau, D. B. et al. The 1.85 A structure of an 8R-lipoxygenase suggests a general model for lipoxygenase product specificity. Biochemistry 48, 7906–7915 (2009).
pubmed: 19594169
pmcid: 4715880
doi: 10.1021/bi900084m
Murphy, R. C. & Gijon, M. A. Biosynthesis and metabolism of leukotrienes. Biochem J. 405, 379–395 (2007).
pubmed: 17623009
doi: 10.1042/BJ20070289
Flamand, N., Luo, M., Peters-Golden, M. & Brock, T. G. Phosphorylation of serine 271 on 5-lipoxygenase and its role in nuclear export. J. Biol. Chem. 284, 306–313 (2009).
pubmed: 18978352
pmcid: 2610501
doi: 10.1074/jbc.M805593200
Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).
pubmed: 21919503
doi: 10.1021/ci200227u
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
pmcid: 15264254
doi: 10.1002/jcc.20084
Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
pubmed: 2815665
pmcid: 2815665
doi: 10.1107/S0907444909047337
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).
pubmed: 3689523
pmcid: 3689523
doi: 10.1107/S0907444913000061
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702
pmcid: 20124702
doi: 10.1107/S0907444909052925
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 2483472
pmcid: 2483472
doi: 10.1107/S0021889807021206
Schweizer, S., Eichele, K., Ammon, H. P. & Safayhi, H. 3-Acetoxy group of genuine AKBA (acetyl-11-keto-beta-boswellic acid) is alpha-configurated. Planta Med. 66, 781–782 (2000).
pubmed: 11199146
doi: 10.1055/s-2000-9614
Zwart, P. H. et al. Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419–435 (2008).
pubmed: 18542881
doi: 10.1007/978-1-60327-058-8_28
Dauter, Z., Li, M. & Wlodawer, A. Practical experience with the use of halides for phasing macromolecular structures: a powerful tool for structural genomics. Acta Crystallogr. D Biol. Crystallogr. 57, 239–249 (2001).
pubmed: 11173470
doi: 10.1107/S0907444900015249
Parsons, S. Introduction to twinning. Acta Crystallogr. D Biol. Crystallogr. 59, 1995–2003 (2003).
pubmed: 14573955
doi: 10.1107/S0907444903017657
Wang, C. K., Weeratunga, S. K., Pacheco, C. M. & Hofmann, A. DMAN: a Java tool for analysis of multi-well differential scanning fluorimetry experiments. Bioinformatics 28, 439–440 (2012).
pubmed: 22135419
doi: 10.1093/bioinformatics/btr664
Fischer, L., Szellas, D., Radmark, O., Steinhilber, D. & Werz, O. Phosphorylation- and stimulus-dependent inhibition of cellular 5-lipoxygenase activity by nonredox-type inhibitors. FASEB J. 17, 949–951 (2003).
pubmed: 12670876