Perillyl Alcohol Mitigates Behavioural Changes and Limits Cell Death and Mitochondrial Changes in Unilateral 6-OHDA Lesion Model of Parkinson's Disease Through Alleviation of Oxidative Stress.


Journal

Neurotoxicity research
ISSN: 1476-3524
Titre abrégé: Neurotox Res
Pays: United States
ID NLM: 100929017

Informations de publication

Date de publication:
Aug 2020
Historique:
received: 18 09 2019
accepted: 22 04 2020
revised: 20 04 2020
pubmed: 13 5 2020
medline: 16 6 2021
entrez: 13 5 2020
Statut: ppublish

Résumé

In this study, we aim to assess the phytomedicinal potential of perillyl alcohol (PA), a dietary monoterpenoid, in a unilateral 6-hydroxydopamine (6-OHDA) lesion rat model of Parkinson's disease (PD). We observed that PA supplementation alleviated behavioural abnormalities such as loss of coordination, reduced rearing and motor asymmetry in lesioned animals. We also observed that PA-treated animals exhibited reduced oxidative stress, DNA fragmentation and caspase 3 activity indicating alleviation of apoptotic cell death. We found reduced mRNA levels of pro-apoptotic regulator BAX and pro-inflammatory mediators IL18 and TNFα in PA-treated animals. Further, PA treatment successfully increased mRNA and protein levels of Bcl2, mitochondrial biogenesis regulator PGC1α and tyrosine hydroxylase (TH) in lesioned animals. We observed that PA treatment blocked BAX and Drp1 translocation to mitochondria, an event often associated with the inception of apoptosis. Further, 6-OHDA exposure reduced expression of electron transport chain complexes I and IV, thereby disturbing energy metabolism. Conversely, expression levels of both complexes were upregulated with PA treatment in lesioned rats. Finally, we found that protein levels of Nrf2, the transcription factor responsible for antioxidant gene expression, were markedly reduced in cytosolic and nuclear fraction on 6-OHDA exposure, and PA increased expression of Nrf2 in both fractions. We believe that our data hints towards PA having the ability to provide cytoprotection in a hemiparkinsonian rat model through alleviation of motor deficits, oxidative stress, mitochondrial dysfunction and apoptosis.

Identifiants

pubmed: 32394056
doi: 10.1007/s12640-020-00213-0
pii: 10.1007/s12640-020-00213-0
doi:

Substances chimiques

Bax protein, rat 0
Bcl2 protein, rat 0
Enzyme Inhibitors 0
Monoterpenes 0
NF-E2-Related Factor 2 0
Nfe2l2 protein, rat 0
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha 0
Ppargc1a protein, rat 0
Proto-Oncogene Proteins c-bcl-2 0
Sympatholytics 0
bcl-2-Associated X Protein 0
perillyl alcohol 319R5C7293
Oxidopamine 8HW4YBZ748
Tyrosine 3-Monooxygenase EC 1.14.16.2
Electron Transport Complex IV EC 1.9.3.1
Casp3 protein, rat EC 3.4.22.-
Caspase 3 EC 3.4.22.-
Dnm1l protein, rat EC 3.6.5.5
Dynamins EC 3.6.5.5
Electron Transport Complex I EC 7.1.1.2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

461-477

Références

Allbutt HN, Henderson JM (2007) Use of the narrow beam test in the rat, 6-hydroxydopamine model of Parkinson’s disease. J Neurosci Methods 159:195–202. https://doi.org/10.1016/j.jneumeth.2006.07.006
doi: 10.1016/j.jneumeth.2006.07.006 pubmed: 16942799
Anandhan A, Jacome MS, Lei S, Hernandez-Franco P, Pappa A, Panayiotidis MI, Powers R, Franco R (2017) Metabolic dysfunction in Parkinson’s disease: bioenergetics, redox homeostasis and central carbon metabolism. Brain Res Bull 133:12–30. https://doi.org/10.1016/j.brainresbull.2017.03.009
doi: 10.1016/j.brainresbull.2017.03.009 pubmed: 28341600 pmcid: 5555796
Anis E, Zafeer MF, Firdaus F, Islam SN, Fatima M, Mobarak Hossain M (2018) Evaluation of phytomedicinal potential of perillyl alcohol in an in vitro Parkinson’s disease model. Drug Dev Res 79:218–224. https://doi.org/10.1002/ddr.21436
doi: 10.1002/ddr.21436 pubmed: 30188583
Baluchnejadmojarad T, Rabiee N, Zabihnejad S, Roghani M (2017) Ellagic acid exerts protective effect in intrastriatal 6-hydroxydopamine rat model of Parkinson’s disease: possible involvement of ERβ/Nrf2/HO-1 signaling. Brain Res 1662:23–30. https://doi.org/10.1016/j.brainres.2017.02.021
doi: 10.1016/j.brainres.2017.02.021 pubmed: 28238669
Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366. https://doi.org/10.1002/ana.410380304
doi: 10.1002/ana.410380304 pubmed: 7668820
Belanger JT (1998) Perillyl alcohol: applications in oncology. Altern Med Rev 3:448–57
Blanchard-Fillion B, Souza JM, Friel T, Jiang GC, Vrana K, Sharov V, Barrón L, Schöneich C, Quijano C, Alvarez B, Radi R, Przedborski S, Fernando GS, Horwitz J, Ischiropoulos H (2001) Nitration and inactivation of tyrosine hydroxylase by peroxynitrite. J Biol Chem 276:46017–46023. https://doi.org/10.1074/jbc.M105564200
doi: 10.1074/jbc.M105564200 pubmed: 11590168 pmcid: 11590168
Bolner A, Micciolo R, Bosello O, Nordera GP (2016) A Panel of Oxidative Stress Markers in Parkinson’s Disease. Clin Lab 62:105–12
Borlongan CV, Sanberg PR (1995) Elevated body swing test: a new behavioral parameter for rats with 6-hydroxydopamine-induced hemiparkinsonism. J Neurosci 15:5372–5378
doi: 10.1523/JNEUROSCI.15-07-05372.1995
Bose A, Beal MF (2016) Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 139(Suppl):216–231. https://doi.org/10.1111/jnc.13731
doi: 10.1111/jnc.13731 pubmed: 27546335
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
doi: 10.1016/0003-2697(76)90527-3
Bruns I, Sauer B, Burger MC, Eriksson J, Hofmann U, Braun Y, Harter PN, Luger A-L, Ronellenfitsch MW, Steinbach JP, Rieger J (2019) Disruption of peroxisome proliferator–activated receptor γ coactivator (PGC)-1α reverts key features of the neoplastic phenotype of glioma cells. J Biol Chem 294:3037–3050. https://doi.org/10.1074/jbc.RA118.006993
doi: 10.1074/jbc.RA118.006993 pubmed: 30578297
Choi HI, Kim HJ, Park JS, Kim IJ, Bae EH, Ma SK, Kim SW (2017) PGC-1α attenuates hydrogen peroxide-induced apoptotic cell death by upregulating Nrf-2 via GSK3β inactivation mediated by activated p38 in HK-2 cells. Sci Rep 7:4319. https://doi.org/10.1038/s41598-017-04593-w
doi: 10.1038/s41598-017-04593-w pubmed: 28659586 pmcid: 5489530
Corona JC, Duchen MR (2015) PPARγ and PGC-1α as therapeutic targets in Parkinson’s. Neurochem Res 40:308–16. https://doi.org/10.1007/s11064-014-1377-0
Crowell PL (1999) Prevention and therapy of cancer by dietary monoterpenes. J Nutr 129:775S-778S. https://doi.org/10.1093/jn/129.3.775S
Crowell PL, Elson CE (2001) Isoprenoids, health and disease. In: Handbook of Nutraceuticals and Funtional Foods
Cuadrado A (2015) Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP. Free Radic Biol Med 88:147–157. https://doi.org/10.1016/j.freeradbiomed.2015.04.029
doi: 10.1016/j.freeradbiomed.2015.04.029 pubmed: 25937177
Dabrowska A, Venero JL, Iwasawa R, Hankir M-K, Rahman S, Boobis A, Hajji N (2015) PGC-1α controls mitochondrial biogenesis and dynamics in lead-induced neurotoxicity. Aging (Albany NY) 7:629–47. https://doi.org/10.18632/aging.100790
De Jesús-Cortés H, Miller AD, Britt JK, DeMarco AJ, De Jesús-Cortés M, Stuebing E, Naidoo J, Vázquez-Rosa E, Morlock L, Williams NS, Ready JM, Narayanan NS, Pieper AA (2015) Protective efficacy of P7C3-S243 in the 6-hydroxydopamine model of Parkinson’s disease. NPJ Parkinsons Dis 1:15010. https://doi.org/10.1038/npjparkd.2015.10
doi: 10.1038/npjparkd.2015.10 pubmed: 27158662 pmcid: 4859442
Dipasquale B, Marini AM, Youle RJ (1991) Apoptosis and DNA degradation induced by 1-methyl-4-phenylpyridinium in neurons. Biochem Biophys Res Commun 181:1442–1448
doi: 10.1016/0006-291X(91)92101-O
Elkon H, Melamed E, Offen D (2001) 6-Hydroxydopamine increases ubiquitin-conjugates and protein degradation: implications for the pathogenesis of Parkinson’s disease. Cell Mol Neurobiol 21:771–781
doi: 10.1023/A:1015160323009
Eskes R, Antonsson B, Osen-Sand A, Montessuit S, Richter C, Sadoul R, Mazzei G, Nichols A, Martinou JC (1998) Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol 143:217–224
doi: 10.1083/jcb.143.1.217
Fasano A, Canning CG, Hausdorff JM, Lord S, Rochester L (2017) Falls in Parkinson’s disease: a complex and evolving picture. Mov Disord 32:1524–1536. https://doi.org/10.1002/mds.27195
doi: 10.1002/mds.27195 pubmed: 29067726
Filichia E, Hoffer B, Qi X, Luo Y (2016) Inhibition of Drp1 mitochondrial translocation provides neural protection in dopaminergic system in a Parkinson’s disease model induced by MPTP. Sci Rep 6:32656. https://doi.org/10.1038/srep32656
doi: 10.1038/srep32656 pubmed: 27619562 pmcid: 5020318
Fontanesi F, Soto IC, Horn D, Barrientos A (2006) Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process. Am J Physiol Cell Physiol 291:C1129–C1147. https://doi.org/10.1152/ajpcell.00233.2006
doi: 10.1152/ajpcell.00233.2006 pubmed: 16760263
Gim S-A, Sung J-H, Shah F-A, Kim M-O, Koh P-O (2013) Ferulic acid regulates the AKT/GSK-3β/CRMP-2 signaling pathway in a middle cerebral artery occlusion animal model. Lab Anim Res 29:63–69. https://doi.org/10.5625/lar.2013.29.2.63
doi: 10.5625/lar.2013.29.2.63 pubmed: 23825478 pmcid: 3696626
Goodwill KE, Sabatier C, Marks C, Raag R, Fitzpatrick PF, Stevens RC (1997) Crystal structure of tyrosine hydroxylase at 2.3 A and its implications for inherited neurodegenerative diseases. Nat Struct Biol 4:578–585
doi: 10.1038/nsb0797-578
Grassmann J (2005) Terpenoids as plant antioxidants. Vitam Horm 72:505–35. https://doi.org/10.1016/S0083-6729(05)72015-X
Grune T, Reinheckel T, Joshi M, Davies KJ (1995) Proteolysis in cultured liver epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome. J Biol Chem 270:2344–2351
doi: 10.1074/jbc.270.5.2344
Hattori N, Tanaka M, Ozawa T, Mizuno Y (1991) Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease. Ann Neurol 30:563–571. https://doi.org/10.1002/ana.410300409
doi: 10.1002/ana.410300409 pubmed: 1665052
Hoang T, Choi D-K, Nagai M, Wu D-C, Nagata T, Prou D, Wilson GL, Vila M, Jackson-Lewis V, Dawson VL, Dawson TM, Chesselet M-F, Przedborski S (2009) Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in a mouse model of Parkinson disease. Free Radic Biol Med 47:1049–56. https://doi.org/10.1016/j.freeradbiomed.2009.07.013
Jensen EC (2013) Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec 296:378–381. https://doi.org/10.1002/ar.22641
doi: 10.1002/ar.22641
Khan AQ, Nafees S, Sultana S (2011) Perillyl alcohol protects against ethanol induced acute liver injury in Wistar rats by inhibiting oxidative stress, NFκ-B activation and proinflammatory cytokine production. Toxicology 279:108–114. https://doi.org/10.1016/j.tox.2010.09.017
doi: 10.1016/j.tox.2010.09.017 pubmed: 20923693
Kuter K, Kratochwil M, Berghauzen-Maciejewska K, Głowacka U, Sugawa MD, Ossowska K, Dencher NA (2016) Adaptation within mitochondrial oxidative phosphorylation supercomplexes and membrane viscosity during degeneration of dopaminergic neurons in an animal model of early Parkinson’s disease. Biochim Biophys Acta 1862:741–753. https://doi.org/10.1016/j.bbadis.2016.01.022
doi: 10.1016/j.bbadis.2016.01.022 pubmed: 26844379
Lange KW (1989) Circling behavior in old rats after unilateral intranigral injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Life Sci 45:1709–1714
doi: 10.1016/0024-3205(89)90281-6
Latchoumycandane C, Anantharam V, Jin H, Kanthasamy A, Kanthasamy A (2011) Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKCδ in cell culture and animal models of Parkinson’s disease. Toxicol Appl Pharmacol 256:314–23. https://doi.org/10.1016/j.taap.2011.07.021
Li R, Liang T, Xu L, Zheng N, Zhang K, Duan X (2013a) Puerarin attenuates neuronal degeneration in the substantia nigra of 6-OHDA-lesioned rats through regulating BDNF expression and activating the Nrf2/ARE signaling pathway. Brain Res 1523:1–9. https://doi.org/10.1016/j.brainres.2013.05.046
doi: 10.1016/j.brainres.2013.05.046 pubmed: 23747813
Li Z, Dong X, Liu H, Chen X, Shi H, Fan Y, Hou D, Zhang X (2013b) Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt. Mol Vis 19:1656–1666
pubmed: 23901249 pmcid: 3725964
Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370. https://doi.org/10.1016/j.cmet.2005.05.004
doi: 10.1016/j.cmet.2005.05.004 pubmed: 16054085
Norman AB, Norgren RB, Wyatt LM, Hildebrand JP, Sanberg PR (1992) The direction of apomorphine-induced rotation behavior is dependent on the location of excitotoxin lesions in the rat basal ganglia. Brain Res 569:169–172
doi: 10.1016/0006-8993(92)90386-N
Ong TP, Cardozo MT, de Conti A, Moreno FS (2012) Chemoprevention of hepatocarcinogenesis with dietary isoprenic derivatives: cellular and molecular aspects. Curr Cancer Drug Targets 12:1173–1190
pubmed: 22873216
Park J-H, Lee D-G, Yeon S-W, Kwon H-S, Ko J-H, Shin D-J, Park H-S, Kim Y-S, Bang M-H, Baek N-I (2011) Isolation of megastigmane sesquiterpenes from the silkworm (Bombyx mori L.) droppings and their promotion activity on HO-1 and SIRT1. Arch Pharm Res 34:533–542. https://doi.org/10.1007/s12272-011-0403-x
doi: 10.1007/s12272-011-0403-x pubmed: 21544718
Paxinos G, Charles Watson (2007) The Rat Brain in Stereotaxic Coordinates Sixth Edition
Pradeep H, Sharma B, Rajanikant GK (2014) Drp1 in ischemic neuronal death: an unusual suspect. Curr Med Chem 21:2183–2189
doi: 10.2174/0929867321666131228203513
Prasad SN, Muralidhara (2014) Protective effects of geraniol (a monoterpene) in a diabetic neuropathy rat model: attenuation of behavioral impairments and biochemical perturbations. J Neurosci Res 92:1205–1216. https://doi.org/10.1002/jnr.23393
doi: 10.1002/jnr.23393 pubmed: 24752916
Qi X, Qvit N, Su Y-C, Mochly-Rosen D (2013) A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci 126:789–802. https://doi.org/10.1242/jcs.114439
doi: 10.1242/jcs.114439 pubmed: 23239023 pmcid: 3619809
Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, Hamilton RL, Chu CT, Jordan-Sciutto KL (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66:75–85. https://doi.org/10.1097/nen.0b013e31802d6da9
doi: 10.1097/nen.0b013e31802d6da9 pubmed: 17204939 pmcid: 2253896
Randrup A, Munkvad I (1974) Pharmacology and physiology of stereotyped behavior. J Psychiatr Res 11:1–10
doi: 10.1016/0022-3956(74)90062-4
Rojo AI, Innamorato NG, Martín-Moreno AM, De Ceballos ML, Yamamoto M, Cuadrado A (2010) Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia 58:588–598. https://doi.org/10.1002/glia.20947
doi: 10.1002/glia.20947 pubmed: 19908287
Ryu J, Zhang R, Hong B-H, Yang E-J, Kang KA, Choi M, Kim KC, Noh S-J, Kim HS, Lee N-H, Hyun JW, Kim H-S (2013) Phloroglucinol attenuates motor functional deficits in an animal model of Parkinson’s disease by enhancing Nrf2 activity. PLoS One 8:e71178. https://doi.org/10.1371/journal.pone.0071178
doi: 10.1371/journal.pone.0071178 pubmed: 23976995 pmcid: 3748069
Sanders LH, Timothy Greenamyre J (2013) Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic Biol Med 62:111–120. https://doi.org/10.1016/j.freeradbiomed.2013.01.003
Sarlette A, Krampfl K, Grothe C, von Neuhoff N, Dengler R, Petri S (2008) Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 67:1055–1062. https://doi.org/10.1097/NEN.0b013e31818b4906
doi: 10.1097/NEN.0b013e31818b4906 pubmed: 18957896
Sawada M, Hirata Y, Arai H, Iizuka R, Nagatsu T (1987) Tyrosine hydroxylase, tryptophan hydroxylase, biopterin, and neopterin in the brains of normal controls and patients with senile dementia of Alzheimer type. J Neurochem 48:760–764
doi: 10.1111/j.1471-4159.1987.tb05582.x
Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787
doi: 10.1016/S0028-3908(00)00005-8
Sell C (1995) Natural product-their chemistry and biological significance, Mann J, Davidson RS, Hobbs JB, Banthorpe DV, Harborne JB, Longman, Harlow, 1994. No of pages: xiv + 455, price £24.95. ISBN 0–582–06009-5. Flavour Fragr J 10:60–60 . https://doi.org/10.1002/ffj.2730100111
Sherman TG, Moody CA (1995) Alterations in tyrosine hydroxylase expression following partial lesions of the nigrostriatal bundle. Brain Res Mol Brain Res 29:285–296
doi: 10.1016/0169-328X(94)00259-H
Shrivastava P, Vaibhav K, Tabassum R, Khan A, Ishrat T, Khan MM, Ahmad A, Islam F, Safhi MM, Islam F (2013) Anti-apoptotic and anti-inflammatory effect of Piperine on 6-OHDA induced Parkinson’s rat model. J Nutr Biochem 24:680–687. https://doi.org/10.1016/j.jnutbio.2012.03.018
doi: 10.1016/j.jnutbio.2012.03.018 pubmed: 22819561
Siddiqui A, Rane A, Rajagopalan S, Chinta SJ, Andersen JK (2016) Detrimental effects of oxidative losses in parkin activity in a model of sporadic Parkinson’s disease are attenuated by restoration of PGC1alpha. Neurobiol Dis 93:115–120. https://doi.org/10.1016/j.nbd.2016.05.009
doi: 10.1016/j.nbd.2016.05.009 pubmed: 27185595
Skaper SD (ed) (2012) Neurotrophic factors. Humana Press, Totowa
Soto-Otero R, Méndez-Alvarez E, Hermida-Ameijeiras A, Muñoz-Patiño AM, Labandeira-Garcia JL (2000) Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem 74:1605–1612
doi: 10.1046/j.1471-4159.2000.0741605.x
Spence J, Sadis S, Haas AL, Finley D (1995) A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15:1265–1273
doi: 10.1128/MCB.15.3.1265
Stewart D, Killeen E, Naquin R, Alam S, Alam J (2003) Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J Biol Chem 278:2396–2402. https://doi.org/10.1074/jbc.M209195200
doi: 10.1074/jbc.M209195200 pubmed: 12441344
Tabassum R, Vaibhav K, Shrivastava P, Khan A, Ahmed ME, Ashafaq M, Khan MB, Islam F, Safhi MM, Islam F (2015) Perillyl alcohol improves functional and histological outcomes against ischemia-reperfusion injury by attenuation of oxidative stress and repression of COX-2, NOS-2 and NF-κB in middle cerebral artery occlusion rats. Eur J Pharmacol 747:190–199. https://doi.org/10.1016/j.ejphar.2014.09.015
doi: 10.1016/j.ejphar.2014.09.015 pubmed: 25240714
Tatton NA (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166:29–43. https://doi.org/10.1006/exnr.2000.7489
doi: 10.1006/exnr.2000.7489 pubmed: 11031081
Tatton NA, Maclean-Fraser A, Tatton WG, Perl DP, Olanow CW (1998) A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann Neurol 44:S142–S148
doi: 10.1002/ana.410440721
Thibaut F, Ribeyre JM, Dourmap N, Meloni R, Laurent C, Campion D, Ménard JF, Dollfus S, Mallet J, Petit M (1997) Association of DNA polymorphism in the first intron of the tyrosine hydroxylase gene with disturbances of the catecholaminergic system in schizophrenia. Schizophr Res 23:259–264
doi: 10.1016/S0920-9964(96)00118-1
Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62:5196–5203
pubmed: 12234984
Todorovic M, Wood SA, Mellick GD (2016) Nrf2: a modulator of Parkinson’s disease? J Neural Transm 123:611–619. https://doi.org/10.1007/s00702-016-1563-0
doi: 10.1007/s00702-016-1563-0 pubmed: 27145762
Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354
doi: 10.1073/pnas.76.9.4350
Vivekanantham S, Shah S, Dewji R, Dewji A, Khatri C, Ologunde R (2015) Neuroinflammation in Parkinson’s disease: role in neurodegeneration and tissue repair. Int J Neurosci 125:717–725. https://doi.org/10.3109/00207454.2014.982795
doi: 10.3109/00207454.2014.982795 pubmed: 25364880
Wang P, Wang P, Liu B, Zhao J, Pang Q, Agrawal SG, Jia L, Liu F-T (2015) Dynamin-related protein Drp1 is required for Bax translocation to mitochondria in response to irradiation-induced apoptosis. Oncotarget 6:22598–22612. https://doi.org/10.18632/oncotarget.4200
doi: 10.18632/oncotarget.4200 pubmed: 26093086 pmcid: 4673185
Webster KA (2012) Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Futur Cardiol 8:863–884. https://doi.org/10.2217/fca.12.58
doi: 10.2217/fca.12.58
Xiao H, Lv F, Xu W, Zhang L, Jing P, Cao X (2011) Deprenyl prevents MPP(+)-induced oxidative damage in PC12 cells by the upregulation of Nrf2-mediated NQO1 expression through the activation of PI3K/Akt and Erk. Toxicology 290:286–294. https://doi.org/10.1016/j.tox.2011.10.007
doi: 10.1016/j.tox.2011.10.007 pubmed: 22019741
Xu Y, Wang W, Jin K, Zhu Q, Lin H, Xie M, Wang D (2017) Perillyl alcohol protects human renal tubular epithelial cells from hypoxia/reoxygenation injury via inhibition of ROS, endoplasmic reticulum stress and activation of PI3K/Akt/eNOS pathway. Biomed Pharmacother 95:662–669. https://doi.org/10.1016/j.biopha.2017.08.129
doi: 10.1016/j.biopha.2017.08.129 pubmed: 28886525
Yuan H, Gerencser AA, Liot G, Lipton SA, Ellisman M, Perkins GA, Bossy-Wetzel E (2007) Mitochondrial fission is an upstream and required event for bax foci formation in response to nitric oxide in cortical neurons. Cell Death Differ 14:462–471. https://doi.org/10.1038/sj.cdd.4402046
doi: 10.1038/sj.cdd.4402046 pubmed: 17053808
Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F (2013) Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 100:30–47. https://doi.org/10.1016/j.pneurobio.2012.09.003
doi: 10.1016/j.pneurobio.2012.09.003 pubmed: 23025925
Zhang Z, Liu L, Jiang X, Zhai S, Xing D (2016) The essential role of Drp1 and its regulation by S-nitrosylation of Parkin in dopaminergic neurodegeneration: implications for Parkinson’s disease. Antioxid Redox Signal 25:609–622. https://doi.org/10.1089/ars.2016.6634
doi: 10.1089/ars.2016.6634 pubmed: 27267045
Zhao F, Wang W, Wang C, Siedlak SL, Fujioka H, Tang B, Zhu X (2017) Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: implications for idiopathic Parkinson’s disease. Biochim Biophys Acta Mol basis Dis 1863:1359–1370. https://doi.org/10.1016/j.bbadis.2017.02.016
doi: 10.1016/j.bbadis.2017.02.016 pubmed: 28215578
Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, Grünblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, Wüllner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet J-C, Scherzer CR, Global PD Gene Expression (GPEX) Consortium (2010) PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2:52ra73. https://doi.org/10.1126/scitranslmed.3001059
doi: 10.1126/scitranslmed.3001059 pubmed: 20926834 pmcid: 3129986
Zhou W, Fukumoto S, Yokogoshi H (2009) Components of lemon essential oil attenuate dementia induced by scopolamine. Nutr Neurosci 12:57–64. https://doi.org/10.1179/147683009X388832
doi: 10.1179/147683009X388832 pubmed: 19356307
Zuch CL, Nordstroem VK, Briedrick LA, Hoernig GR, Granholm AC, Bickford PC (2000) Time course of degenerative alterations in nigral dopaminergic neurons following a 6-hydroxydopamine lesion. J Comp Neurol 427:440–454
doi: 10.1002/1096-9861(20001120)427:3<440::AID-CNE10>3.0.CO;2-7

Auteurs

Ehraz Anis (E)

Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India. eanis107@myamu.ac.in.

Mohd Faraz Zafeer (MF)

Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.

Fakiha Firdaus (F)

Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.

Shireen Naaz Islam (SN)

Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.

Azka Anees Khan (AA)

Department of Pathology, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.

M Mobarak Hossain (MM)

Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH