Predicting collapse of complex ecological systems: quantifying the stability-complexity continuum.

Lotka–Volterra dynamics complexity interaction network population dynamics resilience structural stability

Journal

Journal of the Royal Society, Interface
ISSN: 1742-5662
Titre abrégé: J R Soc Interface
Pays: England
ID NLM: 101217269

Informations de publication

Date de publication:
05 2020
Historique:
entrez: 13 5 2020
pubmed: 13 5 2020
medline: 22 6 2021
Statut: ppublish

Résumé

Dynamical shifts between the extremes of stability and collapse are hallmarks of ecological systems. These shifts are limited by and change with biodiversity, complexity, and the topology and hierarchy of interactions. Most ecological research has focused on identifying conditions for a system to shift from stability to any degree of instability-species abundances do not return to exact same values after perturbation. Real ecosystems likely have a continuum of shifting between stability and collapse that depends on the specifics of how the interactions are structured, as well as the type and degree of disturbance due to environmental change. Here we map boundaries for the extremes of strict stability and collapse. In between these boundaries, we find an intermediate regime that consists of single-species extinctions, which we call the extinction continuum. We also develop a metric that locates the position of the system within the extinction continuum-thus quantifying proximity to stability or collapse-in terms of ecologically measurable quantities such as growth rates and interaction strengths. Furthermore, we provide analytical and numerical techniques for estimating our new metric. We show that our metric does an excellent job of capturing the system's behaviour in comparison with other existing methods-such as May's stability criteria or critical slowdown. Our metric should thus enable deeper insights about how to classify real systems in terms of their overall dynamics and their limits of stability and collapse.

Identifiants

pubmed: 32396810
doi: 10.1098/rsif.2019.0391
pmc: PMC7276551
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

20190391

Références

Sci Rep. 2018 May 29;8(1):8246
pubmed: 29844420
Nat Ecol Evol. 2017 Mar 23;1(4):101
pubmed: 28812678
Science. 2002 May 10;296(5570):1120-3
pubmed: 12004131
Nature. 2009 Apr 23;458(7241):1018-20
pubmed: 19396144
Science. 2009 Aug 7;325(5941):747-50
pubmed: 19661430
Nature. 2012 Feb 19;483(7388):205-8
pubmed: 22343894
Nature. 2011 Dec 25;481(7381):357-9
pubmed: 22198671
Science. 2007 Jul 6;317(5834):58-62
pubmed: 17615333
Science. 2012 Jun 1;336(6085):1175-7
pubmed: 22654061
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 1):020902
pubmed: 15783311
J Theor Biol. 2014 Nov 7;360:54-58
pubmed: 25008419
Nat Commun. 2016 Aug 24;7:12573
pubmed: 27553393
Phys Rev E. 2017 Apr;95(4-1):042414
pubmed: 28505745
Nat Ecol Evol. 2018 Aug;2(8):1237-1242
pubmed: 29988167
PLoS One. 2017 Dec 7;12(12):e0189086
pubmed: 29216245
Ecol Lett. 2008 Mar;11(3):208-16
pubmed: 18070101
Sci Rep. 2016 Oct 19;6:35648
pubmed: 27759102
Ecol Lett. 2013 May;16 Suppl 1:106-15
pubmed: 23346947
Nature. 1972 Aug 18;238(5364):413-4
pubmed: 4559589
Nat Commun. 2016 Aug 02;7:12285
pubmed: 27481625
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3648-52
pubmed: 21307311
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17923-8
pubmed: 25468963
Nature. 2012 Jul 12;487(7406):227-30
pubmed: 22722863
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17546-51
pubmed: 25422412
Ecol Lett. 2010 Feb;13(2):154-61
pubmed: 19968697
Ecol Lett. 2012 Apr;15(4):291-300
pubmed: 22313549
Nature. 2012 Jun 28;486(7404):485-9
pubmed: 22722834
Nature. 2013 Aug 22;500(7463):449-52
pubmed: 23969462
Nat Commun. 2017 Feb 24;8:
pubmed: 28233768
Ecol Lett. 2006 Nov;9(11):1228-36
pubmed: 17040325
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042705
pubmed: 25974525
J R Soc Interface. 2020 May;17(166):20190391
pubmed: 32396810
Ecol Lett. 2010 Dec;13(12):1546-59
pubmed: 20937057
Ecol Lett. 2012 Mar;15(3):243-50
pubmed: 22276597
Ecol Lett. 2014 Sep;17(9):1094-100
pubmed: 24946877
PLoS Comput Biol. 2018 Feb 8;14(2):e1005988
pubmed: 29420532
Science. 2012 Oct 19;338(6105):344-8
pubmed: 23087241
Science. 2003 Feb 28;299(5611):1388-91
pubmed: 12610303
J Anim Ecol. 2009 Jan;78(1):253-69
pubmed: 19120606
Science. 2014 Jul 25;345(6195):1253497
pubmed: 25061214
Nature. 2011 Sep 14;478(7368):233-5
pubmed: 21918515
Nature. 2006 Jul 20;442(7100):265-9
pubmed: 16855582
Oecologia. 1997 Feb;109(3):323-334
pubmed: 28307528
Nat Commun. 2016 Jun 23;7:12031
pubmed: 27337386
J Theor Biol. 2006 Aug 7;241(3):552-63
pubmed: 16466654
Theor Popul Biol. 2005 Mar;67(2):85-99
pubmed: 15713322
J Anim Ecol. 2014 Jan;83(1):70-84
pubmed: 23692182

Auteurs

Susanne Pettersson (S)

Department of Space, Earth and Environment, Chalmers University of Technology, Maskingränd 2, 412 58 Gothenburg, Sweden.

Van M Savage (VM)

Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095, USA.
Department of Biomathematics, UCLA, Los Angeles, CA 90095, USA.

Martin Nilsson Jacobi (M)

Department of Space, Earth and Environment, Chalmers University of Technology, Maskingränd 2, 412 58 Gothenburg, Sweden.

Articles similaires

High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.

Akina Mori, Marjolein Vermeer, Lenie J van den Broek et al.
1.00
Humans Bronchi Lab-On-A-Chip Devices Epithelial Cells Goblet Cells
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests

Classifications MeSH