PTSD is associated with neuroimmune suppression: evidence from PET imaging and postmortem transcriptomic studies.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
12 05 2020
Historique:
received: 03 10 2019
accepted: 31 03 2020
entrez: 14 5 2020
pubmed: 14 5 2020
medline: 1 9 2020
Statut: epublish

Résumé

Despite well-known peripheral immune activation in posttraumatic stress disorder (PTSD), there are no studies of brain immunologic regulation in individuals with PTSD. [

Identifiants

pubmed: 32398677
doi: 10.1038/s41467-020-15930-5
pii: 10.1038/s41467-020-15930-5
pmc: PMC7217830
doi:

Substances chimiques

Acetamides 0
Adaptor Proteins, Signal Transducing 0
N-(2-methoxybenzyl)-N-(4-phenoxypyridin-3-yl)acetamide 0
Pyridines 0
Radiopharmaceuticals 0
Receptors, GABA 0
Receptors, Tumor Necrosis Factor, Member 14 0
TNFRSF14 protein, human 0
TSPO protein, human 0
TSPOAP1 protein, human 0

Types de publication

Journal Article Observational Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

2360

Subventions

Organisme : NIMH NIH HHS
ID : R01 MH110674
Pays : United States
Organisme : NIAAA NIH HHS
ID : K01 AA024788
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001863
Pays : United States
Organisme : NIMH NIH HHS
ID : F30 MH116607
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007205
Pays : United States

Investigateurs

Matthew J Girgenti (MJ)
Matthew J Friedman (MJ)
Ronald S Duman (RS)
John H Krystal (JH)

Références

Goldstein, R. B. et al. The epidemiology of DSM-5 posttraumatic stress disorder in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions-III. Soc. Psychiatry Psychiatr. Epidemiol. 51, 1137–1148 (2016).
pubmed: 27106853 pmcid: 4980174 doi: 10.1007/s00127-016-1208-5
Kilpatrick, D. G., Resnick, H. S., Milanak, M. E., Miller, M. W., Keyes, K. M. & Friedman, M. J. National estimates of exposure to traumatic events and PTSD prevalence using DSM-IV and DSM-5 criteria. J. Trauma. Stress 26, 537–547 (2013).
pubmed: 24151000 pmcid: 4096796 doi: 10.1002/jts.21848
Breslau, N. The epidemiology of trauma, PTSD, and other posttrauma disorders. Trauma Violence Abuse 10, 198–210 (2009).
pubmed: 19406860 doi: 10.1177/1524838009334448 pmcid: 19406860
Krystal, J. H. et al. It is time to address the crisis in the pharmacotherapy of posttraumatic stress disorder: a consensus statement of the PTSD Psychopharmacology Working Group. Biol. Psychiatry 82, e51–e59 (2017).
pubmed: 28454621 doi: 10.1016/j.biopsych.2017.03.007 pmcid: 28454621
Tursich, M. et al. Association of trauma exposure with proinflammatory activity: a transdiagnostic meta-analysis. Transl. Psychiatry 4, e413–e421 (2014).
pubmed: 25050993 pmcid: 4119223 doi: 10.1038/tp.2014.56
Eraly, S. A. et al. Assessment of plasma C-reactive protein as a biomarker of posttraumatic stress disorder risk. JAMA Psychiatry 71, 423–431 (2014).
pubmed: 24576974 pmcid: 4032578 doi: 10.1001/jamapsychiatry.2013.4374
Michopoulos, V. et al. Association of CRP genetic variation and CRP level with elevated PTSD symptoms and physiological responses in a civilian population with high levels of trauma. Am. J. Psychiatry 172, 353–362 (2014).
pubmed: 25827033 pmcid: 4440454 doi: 10.1176/appi.ajp.2014.14020263
O’Donovan, A., Ahmadian, A. J., Neylan, T. C., Pacult, M. A., Edmondson, D. & Cohen, B. E. Current posttraumatic stress disorder and exaggerated threat sensitivity associated with elevated inflammation in the Mind Your Heart Study. Brain Behav. Immun. 60, 198–205 (2017).
pubmed: 27765647 doi: 10.1016/j.bbi.2016.10.014 pmcid: 27765647
Pierce, B. L. et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J. Clin. Oncol. 27, 3437–3444 (2009).
pubmed: 19470939 pmcid: 2717751 doi: 10.1200/JCO.2008.18.9068
Bohula, E. A. et al. Achievement of dual low-density lipoprotein cholesterol and high-sensitivity c-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT. Circulation 132, 1224–1233 (2015).
pubmed: 26330412 doi: 10.1161/CIRCULATIONAHA.115.018381
Passos, I. C. et al. Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry 2, 1002–1012 (2015).
pubmed: 26544749 doi: 10.1016/S2215-0366(15)00309-0
Michopoulos V, et al. Association of prospective risk for chronic PTSD symptoms with low TNFα and IFNγ concentrations in the immediate aftermath of trauma exposure. Am. J. Psychiatry 177, 58–65 (2020).
Bersani, F. S. et al. A population of atypical CD56−CD16+ natural killer cells is expanded in PTSD and is associated with symptom severity. Brain Behav. Immun. 56, 264–270 (2016).
pubmed: 27025668 doi: 10.1016/j.bbi.2016.03.021
Baker, D. G. et al. Plasma and cerebrospinal fluid interleukin-6 concentrations in posttraumatic stress disorder. Neuroimmunomodulation 9, 209–217 (2001).
pubmed: 11847483 doi: 10.1159/000049028 pmcid: 11847483
Lerman, I. et al. Posttraumatic stress disorder influences the nociceptive and intrathecal cytokine response to a painful stimulus in combat veterans. Psychoneuroendocrinology 73, 99–108 (2016).
pubmed: 27490714 doi: 10.1016/j.psyneuen.2016.07.202 pmcid: 27490714
Bonne, O. et al. Corticotropin-releasing factor, interleukin-6, brain-derived neurotrophic factor, insulin-like growth factor-1, and substance P in the cerebrospinal fluid of civilians with posttraumatic stress disorder before and after treatment with paroxetine. J. Clin. Psychiatry 72, 1124–1128 (2011).
pubmed: 21208596 doi: 10.4088/JCP.09m05106blu pmcid: 21208596
Speer, K., Upton, D., Semple, S. & McKune, A. Systemic low-grade inflammation in post-traumatic stress disorder: a systematic review. J. Inflamm. Res. 11, 111–121 (2018).
pubmed: 29606885 pmcid: 5868606 doi: 10.2147/JIR.S155903
Michopoulos, V., Powers, A., Gillespie, C. F., Ressler, K. J. & Jovanovic, T. Inflammation in Fear- and Anxiety-Based Disorders: PTSD, GAD, and Beyond. Neuropsychopharmacology 42, 254–270 (2017).
pubmed: 27510423 doi: 10.1038/npp.2016.146 pmcid: 27510423
Levkovitz, Y., Fenchel, D., Kaplan, Z., Zohar, J. & Cohen, H. Early post-stressor intervention with minocycline, a second-generation tetracycline, attenuates post-traumatic stress response in an animal model of PTSD. Eur. Neuropsychopharmacol. 25, 124–132 (2015).
pubmed: 25487770 doi: 10.1016/j.euroneuro.2014.11.012 pmcid: 25487770
Wilson, C. B., McLaughlin, L. D., Nair, A., Ebenezer, P. J., Dange, R. & Francis, J. Inflammation and oxidative stress are elevated in the brain, blood, and adrenal glands during the progression of post-traumatic stress disorder in a predator exposure animal model. PLoS ONE 8, e76146 (2013).
pubmed: 24130763 pmcid: 3794007 doi: 10.1371/journal.pone.0076146
Deslauriers, J., van Wijngaarde, M., Geyer, M. A., Powell, S. & Risbrough, V. B. Effects of LPS-induced immune activation prior to trauma exposure on PTSD-like symptoms in mice. Behav. Brain Res. 323, 117–123 (2017).
pubmed: 28159589 doi: 10.1016/j.bbr.2017.01.048
Frank, M. G., Baratta, M. V., Sprunger, D. B., Watkins, L. R. & Maier, S. F. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav. Immun. 21, 47–59 (2007).
pubmed: 16647243 doi: 10.1016/j.bbi.2006.03.005
Tynan, R. J. et al. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav. Immun. 24, 1058–1068 (2010).
pubmed: 20153418 doi: 10.1016/j.bbi.2010.02.001
O’Connor, K. A. et al. Peripheral and central proinflammatory cytokine response to a severe acute stressor. Brain Res. 991, 123–132 (2003).
pubmed: 14575884 doi: 10.1016/j.brainres.2003.08.006
Plata-Salamán, C. R. et al. Neither acute nor chronic exposure to a naturalistic (predator) stressor influences the interleukin-1β system, tumor necrosis factor-α, transforming growth factor-β1, and neuropeptide mRNAs in specific brain regions. Brain Res. Bull. 51, 187–193 (2000).
pubmed: 10709966 doi: 10.1016/S0361-9230(99)00204-X
Connor, T. J., Brewer, C., Kelly, J. P. & Harkin, A. Acute stress suppresses pro-inflammatory cytokines TNF-α and IL-1β; independent of a catecholamine-driven increase in IL-10 production. J. Neuroimmunol. 159, 119–128 (2005).
pubmed: 15652410 doi: 10.1016/j.jneuroim.2004.10.016
Ching, A. S. C., Kuhnast, B., Damont, A., Roeda, D., Tavitian, B. & Dollé, F. Current paradigm of the 18-kDa translocator protein (TSPO) as a molecular target for PET imaging in neuroinflammation and neurodegenerative diseases. Insights Imaging 3, 111–119 (2012).
pubmed: 22696004 doi: 10.1007/s13244-011-0128-x
Owen, D. R. et al. Determination of [(11)C]PBR28 binding potential in vivo: a first human TSPO blocking study. J. Cereb. Blood Flow Metab. 34, 989–994 (2014).
pubmed: 24643083 pmcid: 4050243 doi: 10.1038/jcbfm.2014.46
Park, E. et al. 11C-PBR28 imaging in multiple sclerosis patients and healthy controls: test-retest reproducibility and focal visualization of active white matter areas. Eur. J. Nucl. Med. Mol. Imaging 42, 1081–1092 (2015).
pubmed: 25833352 doi: 10.1007/s00259-015-3043-4
Hillmer, A. T. et al. Microglial depletion and activation: A [(11)C]PBR28 PET study in nonhuman primates. EJNMMI Res. 7, 59 (2017).
pubmed: 28741281 pmcid: 5524658 doi: 10.1186/s13550-017-0305-0
Hannestad J, Gallezot JD, Schafbauer T. Endotoxin-induced systemic inflammation activates microglia: [11C]PBR28 positron emission tomography in nonhuman primates. NeuroImage 63, 232–239 (2012).
pubmed: 22776451 pmcid: 3699786 doi: 10.1016/j.neuroimage.2012.06.055
Sandiego, C. M. et al. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc. Natl. Acad. Sci. USA 112, 12468–12473 (2015).
pubmed: 26385967 doi: 10.1073/pnas.1511003112
Setiawan, E., Wilson, A. A. & Mizrahi, R. et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry 72, 268–275 (2015).
pubmed: 25629589 pmcid: 4836849 doi: 10.1001/jamapsychiatry.2014.2427
Li, L. et al. Overexpression of the 18 kDa translocator protein (TSPO) in the hippocampal dentate gyrus produced anxiolytic and antidepressant-like behavioural effects. Neuropharmacology 125, 117–128 (2017).
pubmed: 28655607 doi: 10.1016/j.neuropharm.2017.06.023 pmcid: 28655607
Kreisel, T. et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol. Psychiatry 19, 699–709 (2013).
pubmed: 24342992 doi: 10.1038/mp.2013.155 pmcid: 24342992
Herman, J. P., Ostrander, M. M., Mueller, N. K. & Figueiredo, H. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 1201–1213 (2005).
pubmed: 16271821 doi: 10.1016/j.pnpbp.2005.08.006 pmcid: 16271821
Girgenti, M. J. & Duman, R. S. Transcriptome alterations in posttraumatic stress disorder. Biol. Psychiatry 83, 840–848 (2018).
pubmed: 29128043 doi: 10.1016/j.biopsych.2017.09.023 pmcid: 29128043
Young, K. A., Thompson, P. M., Cruz, D. A., Williamson, D. E. & Selemon, L. D. BA11 FKBP5 expression levels correlate with dendritic spine density in postmortem PTSD and controls. Neurobiol. Stress 2, 67–72 (2015).
pubmed: 26844242 pmcid: 4721476 doi: 10.1016/j.ynstr.2015.07.002
Holmes, S. E. et al. Altered metabotropic glutamate receptor 5 markers in PTSD: In vivo and postmortem evidence. Proc. Natl. Acad. Sci. USA 114, 8390 (2017).
pubmed: 28716937 doi: 10.1073/pnas.1701749114 pmcid: 28716937
Tuisku, J. et al. Effects of age, BMI and sex on the glial cell marker TSPO — a multicentre [11C]PBR28 HRRT PET study. Eur. J. Nucl. Med. Mol. Imaging 46, 2329–2338 (2019).
pubmed: 31363804 pmcid: 6717599 doi: 10.1007/s00259-019-04403-7
Giatti, S., Diviccaro, S., Garcia-Segura, L. M. & Melcangi, R. C. Sex differences in the brain expression of steroidogenic molecules under basal conditions and after gonadectomy. J. Neuroendocrinol. 31, e12736 (2019).
pubmed: 31102564 doi: 10.1111/jne.12736 pmcid: 31102564
Krystal JH, et al. Synaptic loss and the pathophysiology of PTSD: implications for ketamine as a prototype novel therapeutic. Curr. Psychiatry Rep. 19, 74 (2017).
Koch, S. B. J., van Zuiden, M., Nawijn, L., Frijling, J. L., Veltman, D. J. & Olff, M. Aberrant resting-state brain activity in posttraumatic stress disorder: a meta-analysis and systematic review. Depress. Anxiety 33, 592–605 (2016).
pubmed: 26918313 doi: 10.1002/da.22478 pmcid: 26918313
Parkhurst Christopher, N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).
pubmed: 24360280 pmcid: 4033691 doi: 10.1016/j.cell.2013.11.030
Bellver-Landete, V. et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat. Commun. 10, 518 (2019).
pubmed: 30705270 pmcid: 6355913 doi: 10.1038/s41467-019-08446-0
Owen, D. R. et al. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J. Cereb. Blood Flow. Metab. 37, 2679–2690 (2017).
pubmed: 28530125 pmcid: 5536262 doi: 10.1177/0271678X17710182
Bae, K.-R., Shim, H.-J., Balu, D., Kim, S. R. & Yu, S.-W. Translocator protein 18 kDa negatively regulates inflammation in microglia. J. Neuroimmune Pharmacol. 9, 424–437 (2014).
pubmed: 24687172 doi: 10.1007/s11481-014-9540-6 pmcid: 24687172
Morrison, F. G. et al. Reduced interleukin 1A gene expression in the dorsolateral prefrontal cortex of individuals with PTSD and depression. Neurosci. Lett. 692, 204–209 (2019).
pubmed: 30366016 doi: 10.1016/j.neulet.2018.10.027 pmcid: 30366016
Chardenot, P. et al. Expression profile and up-regulation of Prax-1 mRNA by antidepressant treatment in the rat brain. Mol. Pharmacol. 62, 1314 (2002).
pubmed: 12435798 doi: 10.1124/mol.62.6.1314 pmcid: 12435798
Chen, C., Kuo, J., Wong, A. & Micevych, P. Estradiol modulates translocator protein (TSPO) and steroid acute regulatory protein (StAR) via protein kinase A (PKA) signaling in hypothalamic astrocytes. Endocrinology 155, 2976–2985 (2014).
pubmed: 24877623 pmcid: 4097996 doi: 10.1210/en.2013-1844
Setiawan, E. et al. Association of translocator protein total distribution volume with duration of untreated major depressive disorder: a cross-sectional study. Lancet Psychiatry 5, 339–347 (2018).
pubmed: 29496589 doi: 10.1016/S2215-0366(18)30048-8
Holmes, S. E. et al. Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: a positron emission tomography study. Biol. Psychiatry 83, 61–69 (2018).
pubmed: 28939116 doi: 10.1016/j.biopsych.2017.08.005
Yehuda, R., Teicher, M. H., Trestman, R. L., Levengood, R. A. & Siever, L. J. Cortisol regulation in posttraumatic stress disorder and major depression: a chronobiological analysis. Biol. Psychiatry 40, 79–88 (1996).
pubmed: 8793040 doi: 10.1016/0006-3223(95)00451-3
Yehuda, R. Post-traumatic stress disorder. N. Engl. J. Med. 346, 108–114 (2002).
pubmed: 11784878 doi: 10.1056/NEJMra012941
Horchar MJ, Wohleb ES. Glucocorticoid receptor antagonism prevents microglia-mediated neuronal remodeling and behavioral despair following chronic unpredictable stress. Brain Behav. Immun 81, 329–340 (2019).
pubmed: 31255679 doi: 10.1016/j.bbi.2019.06.030
Feeny, N. C., Zoellner, L. A., Fitzgibbons, L. A. & Foa, E. B. Exploring the Roles of Emotional Numbing, Depression, and Dissociation in PTSD. J. Trauma. Stress 13, 489–498 (2000).
pubmed: 10948488 doi: 10.1023/A:1007789409330
Sobell LC, Sobell MB. Timeline follow-back. In: Measuring Alcohol Consumption: Psychosocial and Biochemical Methods (Litten RZ, Allen JP. ed.) (Humana Press, 1992).
Owen, D. R. et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J. Cereb. Blood Flow. Metab. 32, 1–5 (2011).
pubmed: 22008728 pmcid: 3323305 doi: 10.1038/jcbfm.2011.147
Gray, M. J., Litz, B. T., Hsu, J. L. & Lombardo, T. W. Psychometric properties of the life events checklist. Assessment 11, 330–341 (2004).
pubmed: 15486169 doi: 10.1177/1073191104269954 pmcid: 15486169
Bernstein, D. P. et al. Development and validation of a brief screening version of the childhood trauma questionnaire. Child Abus. Negl. 27, 169–190 (2003).
doi: 10.1016/S0145-2134(02)00541-0
Hannestad, J. et al. The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: a [11C]PBR28 PET study. Brain Behav. Immun. 33, 131–138 (2013).
pubmed: 23850810 pmcid: 3899398 doi: 10.1016/j.bbi.2013.06.010
Schisterman, E. F., Vexler, A., Whitcomb, B. W. & Liu, A. The limitations due to exposure detection limits for regression models. Am. J. Epidemiol. 163, 374–383 (2006).
pubmed: 16394206 pmcid: 1408541 doi: 10.1093/aje/kwj039
Hilton, J., Yokoi, F., Dannals, R. F., Ravert, H. T., Szabo, Z. & Wong, D. F. Column-switching HPLC for the analysis of plasma in PET imaging studies. Nucl. Med. Biol. 27, 627–630 (2000).
pubmed: 11056380 doi: 10.1016/S0969-8051(00)00125-6
Carson RE, Barker, W. C., Liow J-S., Johnson C. A. Design of a motion-corrected OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT. In: Nuclear Science Symposium, 3281–3285 (IEEE, 2003).
Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289 (2002).
pubmed: 11771995 doi: 10.1006/nimg.2001.0978
Innis, R. B. et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J. Cereb. Blood Flow. Metab. 27, 1533–1539 (2007).
pubmed: 17519979 doi: 10.1038/sj.jcbfm.9600493
APA. Diagnostic and Stastistical Manual of Mental Disorders, 4th edn. (American Psychiatric Publishing, 1994).
Spitzer, R. L., Williams, J. B. W., Gibbon, M. & First, M. B. The structured clinical interview for DSM-III-R (SCID): I: history, rationale, and description. Arch. Gen. Psychiatry 49, 624–629 (1992).
pubmed: 1637252 doi: 10.1001/archpsyc.1992.01820080032005
Pietrzak, R. H., Tsai, J., Harpaz-Rotem, I., Whealin, J. M. & Southwick, S. M. Support for a novel five-factor model of posttraumatic stress symptoms in three independent samples of Iraq/Afghanistan veterans: a confirmatory factor analytic study. J. Psychiatr. Res. 46, 317–322 (2012).
pubmed: 22154134 doi: 10.1016/j.jpsychires.2011.11.013
Armour, C. et al. Dimensional structure of DSM-5 posttraumatic stress symptoms: support for a hybrid Anhedonia and Externalizing Behaviors model. J. Psychiatr. Res. 61, 106–113 (2015).
pubmed: 25479765 doi: 10.1016/j.jpsychires.2014.10.012

Auteurs

Shivani Bhatt (S)

Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06510, USA.

Ansel T Hillmer (AT)

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.
Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA.

Matthew J Girgenti (MJ)

Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.
U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.

Aleksandra Rusowicz (A)

Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.

Michael Kapinos (M)

Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA.

Nabeel Nabulsi (N)

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA.

Yiyun Huang (Y)

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA.

David Matuskey (D)

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.
Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA.

Gustavo A Angarita (GA)

Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.
Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA.

Irina Esterlis (I)

Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06510, USA.
Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.
Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA.
U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.

Margaret T Davis (MT)

Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.

Steven M Southwick (SM)

Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.
U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.

Matthew J Friedman (MJ)

Neurosciences Center, Dartmouth Medical School, Hanover, NH, 03755, USA.

Ronald S Duman (RS)

Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.

Richard E Carson (RE)

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA.

John H Krystal (JH)

Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.
U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.

Robert H Pietrzak (RH)

Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.
U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.

Kelly P Cosgrove (KP)

Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06510, USA. kelly.cosgrove@yale.edu.
Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA. kelly.cosgrove@yale.edu.
Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA. kelly.cosgrove@yale.edu.
Yale PET Center, Yale School of Medicine, New Haven, CT, 06519, USA. kelly.cosgrove@yale.edu.
U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA. kelly.cosgrove@yale.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH