PTSD is associated with neuroimmune suppression: evidence from PET imaging and postmortem transcriptomic studies.
Acetamides
/ administration & dosage
Adaptor Proteins, Signal Transducing
/ metabolism
Adult
Brain
/ diagnostic imaging
Case-Control Studies
Female
Gene Expression Profiling
Healthy Volunteers
Humans
Male
Microglia
/ immunology
Middle Aged
Positron-Emission Tomography
/ methods
Pyridines
/ administration & dosage
Radiopharmaceuticals
/ administration & dosage
Receptors, GABA
/ immunology
Receptors, Tumor Necrosis Factor, Member 14
/ metabolism
Sex Factors
Stress Disorders, Post-Traumatic
/ diagnostic imaging
Young Adult
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
12 05 2020
12 05 2020
Historique:
received:
03
10
2019
accepted:
31
03
2020
entrez:
14
5
2020
pubmed:
14
5
2020
medline:
1
9
2020
Statut:
epublish
Résumé
Despite well-known peripheral immune activation in posttraumatic stress disorder (PTSD), there are no studies of brain immunologic regulation in individuals with PTSD. [
Identifiants
pubmed: 32398677
doi: 10.1038/s41467-020-15930-5
pii: 10.1038/s41467-020-15930-5
pmc: PMC7217830
doi:
Substances chimiques
Acetamides
0
Adaptor Proteins, Signal Transducing
0
N-(2-methoxybenzyl)-N-(4-phenoxypyridin-3-yl)acetamide
0
Pyridines
0
Radiopharmaceuticals
0
Receptors, GABA
0
Receptors, Tumor Necrosis Factor, Member 14
0
TNFRSF14 protein, human
0
TSPO protein, human
0
TSPOAP1 protein, human
0
Types de publication
Journal Article
Observational Study
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
2360Subventions
Organisme : NIMH NIH HHS
ID : R01 MH110674
Pays : United States
Organisme : NIAAA NIH HHS
ID : K01 AA024788
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001863
Pays : United States
Organisme : NIMH NIH HHS
ID : F30 MH116607
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007205
Pays : United States
Investigateurs
Matthew J Girgenti
(MJ)
Matthew J Friedman
(MJ)
Ronald S Duman
(RS)
John H Krystal
(JH)
Références
Goldstein, R. B. et al. The epidemiology of DSM-5 posttraumatic stress disorder in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions-III. Soc. Psychiatry Psychiatr. Epidemiol. 51, 1137–1148 (2016).
pubmed: 27106853
pmcid: 4980174
doi: 10.1007/s00127-016-1208-5
Kilpatrick, D. G., Resnick, H. S., Milanak, M. E., Miller, M. W., Keyes, K. M. & Friedman, M. J. National estimates of exposure to traumatic events and PTSD prevalence using DSM-IV and DSM-5 criteria. J. Trauma. Stress 26, 537–547 (2013).
pubmed: 24151000
pmcid: 4096796
doi: 10.1002/jts.21848
Breslau, N. The epidemiology of trauma, PTSD, and other posttrauma disorders. Trauma Violence Abuse 10, 198–210 (2009).
pubmed: 19406860
doi: 10.1177/1524838009334448
pmcid: 19406860
Krystal, J. H. et al. It is time to address the crisis in the pharmacotherapy of posttraumatic stress disorder: a consensus statement of the PTSD Psychopharmacology Working Group. Biol. Psychiatry 82, e51–e59 (2017).
pubmed: 28454621
doi: 10.1016/j.biopsych.2017.03.007
pmcid: 28454621
Tursich, M. et al. Association of trauma exposure with proinflammatory activity: a transdiagnostic meta-analysis. Transl. Psychiatry 4, e413–e421 (2014).
pubmed: 25050993
pmcid: 4119223
doi: 10.1038/tp.2014.56
Eraly, S. A. et al. Assessment of plasma C-reactive protein as a biomarker of posttraumatic stress disorder risk. JAMA Psychiatry 71, 423–431 (2014).
pubmed: 24576974
pmcid: 4032578
doi: 10.1001/jamapsychiatry.2013.4374
Michopoulos, V. et al. Association of CRP genetic variation and CRP level with elevated PTSD symptoms and physiological responses in a civilian population with high levels of trauma. Am. J. Psychiatry 172, 353–362 (2014).
pubmed: 25827033
pmcid: 4440454
doi: 10.1176/appi.ajp.2014.14020263
O’Donovan, A., Ahmadian, A. J., Neylan, T. C., Pacult, M. A., Edmondson, D. & Cohen, B. E. Current posttraumatic stress disorder and exaggerated threat sensitivity associated with elevated inflammation in the Mind Your Heart Study. Brain Behav. Immun. 60, 198–205 (2017).
pubmed: 27765647
doi: 10.1016/j.bbi.2016.10.014
pmcid: 27765647
Pierce, B. L. et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J. Clin. Oncol. 27, 3437–3444 (2009).
pubmed: 19470939
pmcid: 2717751
doi: 10.1200/JCO.2008.18.9068
Bohula, E. A. et al. Achievement of dual low-density lipoprotein cholesterol and high-sensitivity c-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT. Circulation 132, 1224–1233 (2015).
pubmed: 26330412
doi: 10.1161/CIRCULATIONAHA.115.018381
Passos, I. C. et al. Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry 2, 1002–1012 (2015).
pubmed: 26544749
doi: 10.1016/S2215-0366(15)00309-0
Michopoulos V, et al. Association of prospective risk for chronic PTSD symptoms with low TNFα and IFNγ concentrations in the immediate aftermath of trauma exposure. Am. J. Psychiatry 177, 58–65 (2020).
Bersani, F. S. et al. A population of atypical CD56−CD16+ natural killer cells is expanded in PTSD and is associated with symptom severity. Brain Behav. Immun. 56, 264–270 (2016).
pubmed: 27025668
doi: 10.1016/j.bbi.2016.03.021
Baker, D. G. et al. Plasma and cerebrospinal fluid interleukin-6 concentrations in posttraumatic stress disorder. Neuroimmunomodulation 9, 209–217 (2001).
pubmed: 11847483
doi: 10.1159/000049028
pmcid: 11847483
Lerman, I. et al. Posttraumatic stress disorder influences the nociceptive and intrathecal cytokine response to a painful stimulus in combat veterans. Psychoneuroendocrinology 73, 99–108 (2016).
pubmed: 27490714
doi: 10.1016/j.psyneuen.2016.07.202
pmcid: 27490714
Bonne, O. et al. Corticotropin-releasing factor, interleukin-6, brain-derived neurotrophic factor, insulin-like growth factor-1, and substance P in the cerebrospinal fluid of civilians with posttraumatic stress disorder before and after treatment with paroxetine. J. Clin. Psychiatry 72, 1124–1128 (2011).
pubmed: 21208596
doi: 10.4088/JCP.09m05106blu
pmcid: 21208596
Speer, K., Upton, D., Semple, S. & McKune, A. Systemic low-grade inflammation in post-traumatic stress disorder: a systematic review. J. Inflamm. Res. 11, 111–121 (2018).
pubmed: 29606885
pmcid: 5868606
doi: 10.2147/JIR.S155903
Michopoulos, V., Powers, A., Gillespie, C. F., Ressler, K. J. & Jovanovic, T. Inflammation in Fear- and Anxiety-Based Disorders: PTSD, GAD, and Beyond. Neuropsychopharmacology 42, 254–270 (2017).
pubmed: 27510423
doi: 10.1038/npp.2016.146
pmcid: 27510423
Levkovitz, Y., Fenchel, D., Kaplan, Z., Zohar, J. & Cohen, H. Early post-stressor intervention with minocycline, a second-generation tetracycline, attenuates post-traumatic stress response in an animal model of PTSD. Eur. Neuropsychopharmacol. 25, 124–132 (2015).
pubmed: 25487770
doi: 10.1016/j.euroneuro.2014.11.012
pmcid: 25487770
Wilson, C. B., McLaughlin, L. D., Nair, A., Ebenezer, P. J., Dange, R. & Francis, J. Inflammation and oxidative stress are elevated in the brain, blood, and adrenal glands during the progression of post-traumatic stress disorder in a predator exposure animal model. PLoS ONE 8, e76146 (2013).
pubmed: 24130763
pmcid: 3794007
doi: 10.1371/journal.pone.0076146
Deslauriers, J., van Wijngaarde, M., Geyer, M. A., Powell, S. & Risbrough, V. B. Effects of LPS-induced immune activation prior to trauma exposure on PTSD-like symptoms in mice. Behav. Brain Res. 323, 117–123 (2017).
pubmed: 28159589
doi: 10.1016/j.bbr.2017.01.048
Frank, M. G., Baratta, M. V., Sprunger, D. B., Watkins, L. R. & Maier, S. F. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav. Immun. 21, 47–59 (2007).
pubmed: 16647243
doi: 10.1016/j.bbi.2006.03.005
Tynan, R. J. et al. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav. Immun. 24, 1058–1068 (2010).
pubmed: 20153418
doi: 10.1016/j.bbi.2010.02.001
O’Connor, K. A. et al. Peripheral and central proinflammatory cytokine response to a severe acute stressor. Brain Res. 991, 123–132 (2003).
pubmed: 14575884
doi: 10.1016/j.brainres.2003.08.006
Plata-Salamán, C. R. et al. Neither acute nor chronic exposure to a naturalistic (predator) stressor influences the interleukin-1β system, tumor necrosis factor-α, transforming growth factor-β1, and neuropeptide mRNAs in specific brain regions. Brain Res. Bull. 51, 187–193 (2000).
pubmed: 10709966
doi: 10.1016/S0361-9230(99)00204-X
Connor, T. J., Brewer, C., Kelly, J. P. & Harkin, A. Acute stress suppresses pro-inflammatory cytokines TNF-α and IL-1β; independent of a catecholamine-driven increase in IL-10 production. J. Neuroimmunol. 159, 119–128 (2005).
pubmed: 15652410
doi: 10.1016/j.jneuroim.2004.10.016
Ching, A. S. C., Kuhnast, B., Damont, A., Roeda, D., Tavitian, B. & Dollé, F. Current paradigm of the 18-kDa translocator protein (TSPO) as a molecular target for PET imaging in neuroinflammation and neurodegenerative diseases. Insights Imaging 3, 111–119 (2012).
pubmed: 22696004
doi: 10.1007/s13244-011-0128-x
Owen, D. R. et al. Determination of [(11)C]PBR28 binding potential in vivo: a first human TSPO blocking study. J. Cereb. Blood Flow Metab. 34, 989–994 (2014).
pubmed: 24643083
pmcid: 4050243
doi: 10.1038/jcbfm.2014.46
Park, E. et al. 11C-PBR28 imaging in multiple sclerosis patients and healthy controls: test-retest reproducibility and focal visualization of active white matter areas. Eur. J. Nucl. Med. Mol. Imaging 42, 1081–1092 (2015).
pubmed: 25833352
doi: 10.1007/s00259-015-3043-4
Hillmer, A. T. et al. Microglial depletion and activation: A [(11)C]PBR28 PET study in nonhuman primates. EJNMMI Res. 7, 59 (2017).
pubmed: 28741281
pmcid: 5524658
doi: 10.1186/s13550-017-0305-0
Hannestad J, Gallezot JD, Schafbauer T. Endotoxin-induced systemic inflammation activates microglia: [11C]PBR28 positron emission tomography in nonhuman primates. NeuroImage 63, 232–239 (2012).
pubmed: 22776451
pmcid: 3699786
doi: 10.1016/j.neuroimage.2012.06.055
Sandiego, C. M. et al. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc. Natl. Acad. Sci. USA 112, 12468–12473 (2015).
pubmed: 26385967
doi: 10.1073/pnas.1511003112
Setiawan, E., Wilson, A. A. & Mizrahi, R. et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry 72, 268–275 (2015).
pubmed: 25629589
pmcid: 4836849
doi: 10.1001/jamapsychiatry.2014.2427
Li, L. et al. Overexpression of the 18 kDa translocator protein (TSPO) in the hippocampal dentate gyrus produced anxiolytic and antidepressant-like behavioural effects. Neuropharmacology 125, 117–128 (2017).
pubmed: 28655607
doi: 10.1016/j.neuropharm.2017.06.023
pmcid: 28655607
Kreisel, T. et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol. Psychiatry 19, 699–709 (2013).
pubmed: 24342992
doi: 10.1038/mp.2013.155
pmcid: 24342992
Herman, J. P., Ostrander, M. M., Mueller, N. K. & Figueiredo, H. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 1201–1213 (2005).
pubmed: 16271821
doi: 10.1016/j.pnpbp.2005.08.006
pmcid: 16271821
Girgenti, M. J. & Duman, R. S. Transcriptome alterations in posttraumatic stress disorder. Biol. Psychiatry 83, 840–848 (2018).
pubmed: 29128043
doi: 10.1016/j.biopsych.2017.09.023
pmcid: 29128043
Young, K. A., Thompson, P. M., Cruz, D. A., Williamson, D. E. & Selemon, L. D. BA11 FKBP5 expression levels correlate with dendritic spine density in postmortem PTSD and controls. Neurobiol. Stress 2, 67–72 (2015).
pubmed: 26844242
pmcid: 4721476
doi: 10.1016/j.ynstr.2015.07.002
Holmes, S. E. et al. Altered metabotropic glutamate receptor 5 markers in PTSD: In vivo and postmortem evidence. Proc. Natl. Acad. Sci. USA 114, 8390 (2017).
pubmed: 28716937
doi: 10.1073/pnas.1701749114
pmcid: 28716937
Tuisku, J. et al. Effects of age, BMI and sex on the glial cell marker TSPO — a multicentre [11C]PBR28 HRRT PET study. Eur. J. Nucl. Med. Mol. Imaging 46, 2329–2338 (2019).
pubmed: 31363804
pmcid: 6717599
doi: 10.1007/s00259-019-04403-7
Giatti, S., Diviccaro, S., Garcia-Segura, L. M. & Melcangi, R. C. Sex differences in the brain expression of steroidogenic molecules under basal conditions and after gonadectomy. J. Neuroendocrinol. 31, e12736 (2019).
pubmed: 31102564
doi: 10.1111/jne.12736
pmcid: 31102564
Krystal JH, et al. Synaptic loss and the pathophysiology of PTSD: implications for ketamine as a prototype novel therapeutic. Curr. Psychiatry Rep. 19, 74 (2017).
Koch, S. B. J., van Zuiden, M., Nawijn, L., Frijling, J. L., Veltman, D. J. & Olff, M. Aberrant resting-state brain activity in posttraumatic stress disorder: a meta-analysis and systematic review. Depress. Anxiety 33, 592–605 (2016).
pubmed: 26918313
doi: 10.1002/da.22478
pmcid: 26918313
Parkhurst Christopher, N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).
pubmed: 24360280
pmcid: 4033691
doi: 10.1016/j.cell.2013.11.030
Bellver-Landete, V. et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat. Commun. 10, 518 (2019).
pubmed: 30705270
pmcid: 6355913
doi: 10.1038/s41467-019-08446-0
Owen, D. R. et al. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J. Cereb. Blood Flow. Metab. 37, 2679–2690 (2017).
pubmed: 28530125
pmcid: 5536262
doi: 10.1177/0271678X17710182
Bae, K.-R., Shim, H.-J., Balu, D., Kim, S. R. & Yu, S.-W. Translocator protein 18 kDa negatively regulates inflammation in microglia. J. Neuroimmune Pharmacol. 9, 424–437 (2014).
pubmed: 24687172
doi: 10.1007/s11481-014-9540-6
pmcid: 24687172
Morrison, F. G. et al. Reduced interleukin 1A gene expression in the dorsolateral prefrontal cortex of individuals with PTSD and depression. Neurosci. Lett. 692, 204–209 (2019).
pubmed: 30366016
doi: 10.1016/j.neulet.2018.10.027
pmcid: 30366016
Chardenot, P. et al. Expression profile and up-regulation of Prax-1 mRNA by antidepressant treatment in the rat brain. Mol. Pharmacol. 62, 1314 (2002).
pubmed: 12435798
doi: 10.1124/mol.62.6.1314
pmcid: 12435798
Chen, C., Kuo, J., Wong, A. & Micevych, P. Estradiol modulates translocator protein (TSPO) and steroid acute regulatory protein (StAR) via protein kinase A (PKA) signaling in hypothalamic astrocytes. Endocrinology 155, 2976–2985 (2014).
pubmed: 24877623
pmcid: 4097996
doi: 10.1210/en.2013-1844
Setiawan, E. et al. Association of translocator protein total distribution volume with duration of untreated major depressive disorder: a cross-sectional study. Lancet Psychiatry 5, 339–347 (2018).
pubmed: 29496589
doi: 10.1016/S2215-0366(18)30048-8
Holmes, S. E. et al. Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: a positron emission tomography study. Biol. Psychiatry 83, 61–69 (2018).
pubmed: 28939116
doi: 10.1016/j.biopsych.2017.08.005
Yehuda, R., Teicher, M. H., Trestman, R. L., Levengood, R. A. & Siever, L. J. Cortisol regulation in posttraumatic stress disorder and major depression: a chronobiological analysis. Biol. Psychiatry 40, 79–88 (1996).
pubmed: 8793040
doi: 10.1016/0006-3223(95)00451-3
Yehuda, R. Post-traumatic stress disorder. N. Engl. J. Med. 346, 108–114 (2002).
pubmed: 11784878
doi: 10.1056/NEJMra012941
Horchar MJ, Wohleb ES. Glucocorticoid receptor antagonism prevents microglia-mediated neuronal remodeling and behavioral despair following chronic unpredictable stress. Brain Behav. Immun 81, 329–340 (2019).
pubmed: 31255679
doi: 10.1016/j.bbi.2019.06.030
Feeny, N. C., Zoellner, L. A., Fitzgibbons, L. A. & Foa, E. B. Exploring the Roles of Emotional Numbing, Depression, and Dissociation in PTSD. J. Trauma. Stress 13, 489–498 (2000).
pubmed: 10948488
doi: 10.1023/A:1007789409330
Sobell LC, Sobell MB. Timeline follow-back. In: Measuring Alcohol Consumption: Psychosocial and Biochemical Methods (Litten RZ, Allen JP. ed.) (Humana Press, 1992).
Owen, D. R. et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J. Cereb. Blood Flow. Metab. 32, 1–5 (2011).
pubmed: 22008728
pmcid: 3323305
doi: 10.1038/jcbfm.2011.147
Gray, M. J., Litz, B. T., Hsu, J. L. & Lombardo, T. W. Psychometric properties of the life events checklist. Assessment 11, 330–341 (2004).
pubmed: 15486169
doi: 10.1177/1073191104269954
pmcid: 15486169
Bernstein, D. P. et al. Development and validation of a brief screening version of the childhood trauma questionnaire. Child Abus. Negl. 27, 169–190 (2003).
doi: 10.1016/S0145-2134(02)00541-0
Hannestad, J. et al. The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: a [11C]PBR28 PET study. Brain Behav. Immun. 33, 131–138 (2013).
pubmed: 23850810
pmcid: 3899398
doi: 10.1016/j.bbi.2013.06.010
Schisterman, E. F., Vexler, A., Whitcomb, B. W. & Liu, A. The limitations due to exposure detection limits for regression models. Am. J. Epidemiol. 163, 374–383 (2006).
pubmed: 16394206
pmcid: 1408541
doi: 10.1093/aje/kwj039
Hilton, J., Yokoi, F., Dannals, R. F., Ravert, H. T., Szabo, Z. & Wong, D. F. Column-switching HPLC for the analysis of plasma in PET imaging studies. Nucl. Med. Biol. 27, 627–630 (2000).
pubmed: 11056380
doi: 10.1016/S0969-8051(00)00125-6
Carson RE, Barker, W. C., Liow J-S., Johnson C. A. Design of a motion-corrected OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT. In: Nuclear Science Symposium, 3281–3285 (IEEE, 2003).
Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289 (2002).
pubmed: 11771995
doi: 10.1006/nimg.2001.0978
Innis, R. B. et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J. Cereb. Blood Flow. Metab. 27, 1533–1539 (2007).
pubmed: 17519979
doi: 10.1038/sj.jcbfm.9600493
APA. Diagnostic and Stastistical Manual of Mental Disorders, 4th edn. (American Psychiatric Publishing, 1994).
Spitzer, R. L., Williams, J. B. W., Gibbon, M. & First, M. B. The structured clinical interview for DSM-III-R (SCID): I: history, rationale, and description. Arch. Gen. Psychiatry 49, 624–629 (1992).
pubmed: 1637252
doi: 10.1001/archpsyc.1992.01820080032005
Pietrzak, R. H., Tsai, J., Harpaz-Rotem, I., Whealin, J. M. & Southwick, S. M. Support for a novel five-factor model of posttraumatic stress symptoms in three independent samples of Iraq/Afghanistan veterans: a confirmatory factor analytic study. J. Psychiatr. Res. 46, 317–322 (2012).
pubmed: 22154134
doi: 10.1016/j.jpsychires.2011.11.013
Armour, C. et al. Dimensional structure of DSM-5 posttraumatic stress symptoms: support for a hybrid Anhedonia and Externalizing Behaviors model. J. Psychiatr. Res. 61, 106–113 (2015).
pubmed: 25479765
doi: 10.1016/j.jpsychires.2014.10.012