Low-Cost Active Thermography using Cellphone Infrared Cameras: from Early Detection of Dental Caries to Quantification of THC in Oral Fluid.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
12 05 2020
12 05 2020
Historique:
received:
30
01
2020
accepted:
21
04
2020
entrez:
14
5
2020
pubmed:
14
5
2020
medline:
1
12
2020
Statut:
epublish
Résumé
Active thermography (AT) is a widely studied non-destructive testing method for the characterization and evaluation of biological and industrial materials. Despite its broad range of potential applications, commercialization and wide-spread adaption of AT has long been impeded by the cost and size of infrared (IR) cameras. In this paper, we demonstrate that this cost and size limitation can be overcome using cell-phone attachment IR cameras. A software development kit (SDK) is developed that controls camera attributes through a simple USB interface and acquires camera frames at a constant frame rate up to 33 fps. To demonstrate the performance of our low-cost AT system, we report and discuss our experimental results on two high impact potential applications. The first set of experiments is conducted on a dental sample to investigate the clinical potential of the developed low-cost technology for detecting early dental caries, while the second set of experiments is conducted on the oral-fluid based lateral flow immunoassay to determine the viability of our technology for detecting and quantifying cannabis consumption at the point-of-care. Our results suggest achievement of reliable performance in the low-cost platform, comparable to those of costly and bulky research-grade systems, paving the way for translation of AT techniques to market.
Identifiants
pubmed: 32398732
doi: 10.1038/s41598-020-64796-6
pii: 10.1038/s41598-020-64796-6
pmc: PMC7217835
doi:
Substances chimiques
Dronabinol
7J8897W37S
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7857Références
Almond, D. P. & Patel, P. M. Photothermal Science and Techniques (Chapman and Hall, London (1996).
Tabatabaei, N. Matched-filter thermography. Appl. Sci. 8(4), 581 (2018).
doi: 10.3390/app8040581
Moropoulou, A. I. & Labropoulos, K. C. Non-destructive testing for accessing structural damage and interventions effectiveness for built culture heritage protection, Human-Computer Interaction: Concepts, Methodologies, Tools, and Applications, Information resources management association USA (2015).
Huth, S. T., et al. Lock-in IR-thermography-A novel tool for material and device characterization. In diffusion and defect data part B solid state phenomena, 741-746 (2002).
Bates, D., Smith, G., Lu, D. & Hewitt, J. Rapid thermal non-destructive testing of aircraft components. Compos. B. Eng. 31, 175–85 (2000).
Ciampa, F., Mahmoodi, P., Pinto, F. & Meo, M. Recent advances in active infrared thermography for non-destructive testing of aerospace components. Sensors. 18, 609 (2018).
doi: 10.3390/s18020609
Tabatabaei, N. & Mandelis, A. Thermal-wave radar: A novel subsurface imaging modality with extended depth-resolution dynamic range. Rev. Sci. Instrum. 80(3), 034902 (2009).
doi: 10.1063/1.3095560
Tabatabaei, N., Mandelis, A. & Amaechi, B. T. Thermophotonic radar imaging: An emissivity-normalized modality with advantages over phase lock-in thermography. Appl. Phys. Lett. 98, 163706 (2011).
doi: 10.1063/1.3582243
Tabatabaei, N. & Mandelis, A. Thermal coherence tomography using match filter binary phase coded diffusion waves. Phys. Rev. Lett. 107, 165901 (2011).
doi: 10.1103/PhysRevLett.107.165901
Kaiplavil, S. & Mandelis, A. Truncated-correlation photothermal coherence tomography for deep subsurface analysis. Nat. Photon. 8, 635–642 (2014).
doi: 10.1038/nphoton.2014.111
Tavakolian, P., Sivagurunathan, K. & Mandelis, A. Enhanced truncated correlation photothermal coherence tomography with application to deep subsurface defect imaging and 3-dimensional reconstructions. J. Appl. Phys. 122, 023103 (2017).
doi: 10.1063/1.4992807
Breitenstein, O., Warta, W., & Langenkamp, M. Lock-In Thermography. (Springer: Berlin, Germany (2003).
Jäckel, P. & Netzelmann, U. The influence of external magnetic fields on crack contrast in magnetic steel detected by induction thermography. Quant. Infrared Thermogr. J. 10, 237–247 (2013).
doi: 10.1080/17686733.2013.852414
Krstulovic-Opara, L., Klarin, B., Neves, P. & Domazet, Z. Thermal imaging and thermoelastic stress analysis of impact damage of composite materials. Eng. Fail. Anal. 18, 713–719 (2011).
doi: 10.1016/j.engfailanal.2010.11.010
Mendioroz, A., Celorrio, R. & Salazar, A. Ultrasound excited thermography: An efficient tool for the characterization of vertical cracks. Meas. Sci. Technol. 28, 112001 (2017).
doi: 10.1088/1361-6501/aa825a
Wu, D. et al. Inspection of aircraft structural components using lock-in thermography. Quant. Infrared Thermogr. QIRT 96, 251–256 (1996).
Ojaghi, A., Parkhimchyk, A. & Tabatabaei, N. First step toward translation of thermophotonic lock-in imaging to dentistry as an early caries detection technology. J. Biomed. Opt. 21, 096003 (2016).
doi: 10.1117/1.JBO.21.9.096003
Tabatabaei, N., Mandelis, A. & Amaechi, B. T. Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth. J. Biomed. Opt. 16, 071402 (2011).
doi: 10.1117/1.3564890
Tabatabaei, N., Mandelis, A., Dehghany, M., Michaelian, K. H., & Amaechi, B. T. On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis. SPIE (2012).
Breitenstein, O. et al. Microscopic lock-in thermography investigation of leakage sites in integrated circuits. Rev. Sci. Instrum. 71, 4155–4160 (2000).
doi: 10.1063/1.1310345
Cheng, L. & Tian, G. Y. Surface crack detection for carbon fiber reinforced plastic (CFRP) materials using pulsed Eddy current thermography. IEEE Sens. J. 11, 3261–3268 (2011).
doi: 10.1109/JSEN.2011.2157492
Zweschper, T., Dillenz, A., & Busse, G. Ultrasound lock-in thermography- a defect-selective NDT method for the inspection of aerospace components. Insight (2001).
Bonmarin, M. & Le Gal, F. A. Lock-in thermal imaging for the early-stage detection of cutaneous melanoma: a feasibility study. Comput. Biol. Med. 47, 36–43 (2014).
doi: 10.1016/j.compbiomed.2014.01.008
Kaiplavil, S., Mandelis, A., Wang, X. & Feng, T. Photothermal tomography for the functional and structural evaluation, and early mineral loss monitoring in bones. Biomed. Opt. Express. 5(8), 2488–2502 (2014).
doi: 10.1364/BOE.5.002488
Zhang, H. et al. Truncated-correlation photothermal coherence tomography derivative imaging modality for small animal in vivo early tumor detection. Opt. Lett. 44(3), 675–678 (2019).
doi: 10.1364/OL.44.000675
Rogalski, A. Infrared detectors (CRC press 2010).
Rogalski, A. Infrared detectors: an overview. Infrared Phys. Technol 43, 187–210 (2002).
doi: 10.1016/S1350-4495(02)00140-8
Wolfe, W. L., Kruse, P. W. & Bass, M. Thermal detectors. (OSA hand book of optics 1 (1995).
Razani, M., Parkhimchyk, A. & Tabatabaei, N. Lock-in thermography using a cellphone attachment infrared camera. AIP Adv. 8, 035305 (2018).
doi: 10.1063/1.5021601
Tabatabaei, N. & Mandelis, A. Thermal coherence tomography: Depth-resolved imaging in parabolic diffusion-wave fields using the thermal-wave radar. Int. J.Thermophys. 33(10-11), 1989–1995 (2012).
doi: 10.1007/s10765-012-1285-y
Shokouhi, E. B., Razani, M., Gupta, A. & Tabatabaei, N. Comparative study on the detection of early dental caries using thermo-photonic lock-in imaging and optical coherence tomography. Biomed. Opt. Express. 9, 3983–97 (2018).
doi: 10.1364/BOE.9.003983
Department of Health and Human Services, Oral health in America: a report of the Surgeon General, NIH publication, 155-88 (2000).
Benjamin, R. M. Oral health: the silent epidemic. Public health reports. 125, 158 (2010).
doi: 10.1177/003335491012500202
Abanto, J. et al. Impact of oral diseases and disorders on oral health‐related quality of life of preschool children. Community Dent. Oral Epidemiol 39, 105–14 (2011).
doi: 10.1111/j.1600-0528.2010.00580.x
Darling, C. L., Huynh, G. & Fried, D. Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm. J. Biomed. Opt. 11, 034023 (2206).
doi: 10.1117/1.2204603
Dirks, O. B. Posteruptive changes in dental enamel. J. Dent. Res. 45, 503–11 (1966).
doi: 10.1177/00220345660450031101
Alfano, M. C. National Institutes of Health Consensus Development Conference statement. Diagnosis and management of dental caries throughout Life. J. Am. Dent. Assoc. 132, 1153–1161 (2001).
Matvienko, A., Mandelis, A., Jeon, R. J. & Abrams, S. H. Theoretical analysis of coupled diffuse-photon-density and thermal-wave field depth profiles photothermally generated in layered turbid dental structures. J. Appl. Phys. 105, 102022 (2009).
doi: 10.1063/1.3116128
Koczula, K. M. & Gallotta, A. Lateral flow assays. Essays Biochem. 60, 111–20 (2016).
doi: 10.1042/EBC20150012
Schulze, H. et al. Driving under the influence of drugs, alcohol and medicines in Europe-findings from the DRUID project, Lisbon: EMCDDA (2012).
Thapa, D., Samadi, N., Patel, N. & Tabatabaei, N. Thermographic detection and quantification of THC in oral fluid at unprecedented low concentrations. Biomed. Opt. Express. 11(4), 2178–2190 (2020).
doi: 10.1364/BOE.388990
Ojaghi, A., Parkhimchyk, A., & Tabatabaei, N. Long-wave infrared thermophotonic imaging of demineralization in dental Hard tissue. Int. J. Thermophys. 37 (2016).
Pickering, S. & Almond, D. Matched excitation energy comparison of the pulse and lock-in thermography NDE techniques. Ndt & E International. 41, 501–9 (2008).
doi: 10.1016/j.ndteint.2008.05.007
Busse, G. & Eyerer, P. Thermal wave remote and non-destructive inspection of polymers. Appl. Phys. Lett. 43, 355–7 (1983).
doi: 10.1063/1.94335
Dante, R. C. Handbook of friction materials and their applications. Chapter 9, Pages 123-134, Woodhead Publishing (2016).
Young, H D. University Physics, 7
Canadian Society of Forensic Science Drugs and Driving Committee (DDC) Drug Screening Equipment-Oral Fluid Standards and Evaluation Procedures.
Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 32(5), 922–923 (1976).
doi: 10.1107/S0567739476001873
Thapa, D., Raahemifar, K. & Lakshminarayanan, V. Reduction of speckle noise from optical coherence tomography images using multi-frame weighted nuclear norm minimization method. J. Mod. Opt. 62, 1856–64 (2015).
doi: 10.1080/09500340.2015.1068392