Oxytocin and bone quality in the femoral neck of rats in periestropause.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
13 05 2020
13 05 2020
Historique:
received:
29
09
2019
accepted:
17
04
2020
entrez:
15
5
2020
pubmed:
15
5
2020
medline:
15
12
2020
Statut:
epublish
Résumé
The objective of this study is to identify whether oxytocin (OT) contributes to the reduction of osteopenia in the femoral neck of rats in periestropause. Animals in irregular estrous cycles received two NaCl injections (0.15 mol/L) or OT (134 μg/kg) over a 12-h interval, and after thirty-five days without treatments, the biological sample collection was performed. The oxytocin group (Ot) demonstrated the highest enzymatic activity of alkaline phosphatase (p = 0.0138), lowest enzymatic activity of tartrate-resistant acid phosphatase (p = 0.0045), higher percentage of compact bone (p = 0.0359), cortical expression of runt-related transcription factor 2 (p = 0.0101), osterix (p = 0.0101), bone morphogenetic protein-2/4 (p = 0.0101) and periostin (p = 0.0455). Furthermore, the mineral-to-matrix ratio (ν
Identifiants
pubmed: 32404873
doi: 10.1038/s41598-020-64683-0
pii: 10.1038/s41598-020-64683-0
pmc: PMC7220952
doi:
Substances chimiques
Biomarkers
0
Oxytocin
50-56-6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7937Références
Sayegh, R. A. & Stubblefield, P. G. Bone metabolism and the perimenopause overview, risk factors, screening, and osteoporosis preventive measures. Obstetrics and gynecology clinics of North America 29, 495–510 (2002).
doi: 10.1016/S0889-8545(02)00012-8
Botella, S. et al. Traditional and novel bone remodeling markers in premenopausal and postmenopausal women. The Journal of clinical endocrinology and metabolism 98, E1740–1748, https://doi.org/10.1210/jc.2013-2264 (2013).
doi: 10.1210/jc.2013-2264
pubmed: 24001743
Nordstrom, P., Gustafson, Y., Michaelsson, K. & Nordstrom, A. Length of hospital stay after hip fracture and short term risk of death after discharge: a total cohort study in Sweden. Bmj 350, h696, https://doi.org/10.1136/bmj.h696 (2015).
doi: 10.1136/bmj.h696
pubmed: 25700551
pmcid: 4353281
Hemmatian, H. et al. Age-related changes in female mouse cortical bone microporosity. Bone 113, 1–8, https://doi.org/10.1016/j.bone.2018.05.003 (2018).
doi: 10.1016/j.bone.2018.05.003
pubmed: 29738854
Augat, P. & Schorlemmer, S. The role of cortical bone and its microstructure in bone strength. Age and ageing 35(Suppl 2), ii27–ii31, https://doi.org/10.1093/ageing/afl081 (2006).
doi: 10.1093/ageing/afl081
pubmed: 16926200
Ahmed, L. A. et al. Measurement of cortical porosity of the proximal femur improves identification of women with nonvertebral fragility fractures. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 26, 2137–2146, https://doi.org/10.1007/s00198-015-3118-x (2015).
doi: 10.1007/s00198-015-3118-x
Vilayphiou, N., Boutroy, S., Sornay-Rendu, E., Van Rietbergen, B. & Chapurlat, R. Age-related changes in bone strength from HR-pQCT derived microarchitectural parameters with an emphasis on the role of cortical porosity. Bone 83, 233–240, https://doi.org/10.1016/j.bone.2015.10.012 (2016).
doi: 10.1016/j.bone.2015.10.012
pubmed: 26525593
Akkus, O., Adar, F. & Schaffler, M. B. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34, 443–453, https://doi.org/10.1016/j.bone.2003.11.003 (2004).
doi: 10.1016/j.bone.2003.11.003
pubmed: 15003792
van Apeldoorn, A. A. et al. Physicochemical composition of osteoporotic bone in the trichothiodystrophy premature aging mouse determined by confocal Raman microscopy. The journals of gerontology. Series A, Biological sciences and medical sciences 62, 34–40, https://doi.org/10.1093/gerona/62.1.34 (2007).
doi: 10.1093/gerona/62.1.34
Copland, J. A., Ives, K. L., Simmons, D. J. & Soloff, M. S. Functional oxytocin receptors discovered in human osteoblasts. Endocrinology 140, 4371–4374, https://doi.org/10.1210/endo.140.9.7130 (1999).
doi: 10.1210/endo.140.9.7130
pubmed: 10465312
Colucci, S., Colaianni, G., Mori, G., Grano, M. & Zallone, A. Human osteoclasts express oxytocin receptor. Biochemical and biophysical research communications 297, 442–445, https://doi.org/10.1016/s0006-291x(02)02009-0 (2002).
doi: 10.1016/s0006-291x(02)02009-0
pubmed: 12270111
Petersson, M., Lagumdzija, A., Stark, A. & Bucht, E. Oxytocin stimulates proliferation of human osteoblast-like cells. Peptides 23, 1121–1126 (2002).
doi: 10.1016/S0196-9781(02)00041-4
Tamma, R. et al. Oxytocin is an anabolic bone hormone. Proceedings of the National Academy of Sciences of the United States of America 106, 7149–7154, https://doi.org/10.1073/pnas.0901890106 (2009).
doi: 10.1073/pnas.0901890106
pubmed: 19369205
pmcid: 2678458
Breuil, V. et al. Oxytocin and bone remodelling: relationships with neuropituitary hormones, bone status and body composition. Joint, bone, spine: revue du rhumatisme 78, 611–615, https://doi.org/10.1016/j.jbspin.2011.02.002 (2011).
doi: 10.1016/j.jbspin.2011.02.002
Colaianni, G., Sun, L., Zaidi, M. & Zallone, A. Oxytocin and bone. American journal of physiology. Regulatory, integrative and comparative physiology 307, R970–977, https://doi.org/10.1152/ajpregu.00040.2014 (2014).
doi: 10.1152/ajpregu.00040.2014
pubmed: 25209411
pmcid: 4200383
Ferreira, L. B., de Nicola, A. C., Anselmo-Franci, J. A. & Dornelles, R. C. Activity of neurons in the preoptic area and their participation in reproductive senescence: Preliminary findings. Experimental gerontology 72, 157–161, https://doi.org/10.1016/j.exger.2015.10.003 (2015).
doi: 10.1016/j.exger.2015.10.003
pubmed: 26456420
Nicola, A. C. et al. The transition to reproductive senescence is characterized by increase in A6 and AVPV neuron activity with attenuation of noradrenaline content. Experimental gerontology 81, 19–27, https://doi.org/10.1016/j.exger.2016.04.015 (2016).
doi: 10.1016/j.exger.2016.04.015
pubmed: 27108180
Stringhetta-Garcia, C. T. et al. The effects of strength training and raloxifene on bone health in aging ovariectomized rats. Bone 85, 45–54, https://doi.org/10.1016/j.bone.2015.11.023 (2016).
doi: 10.1016/j.bone.2015.11.023
pubmed: 26812611
Stringhetta-Garcia, C. T. et al. Effects of strength training and raloxifene on femoral neck metabolism and microarchitecture of aging female Wistar rats. Scientific reports 7, 14410, https://doi.org/10.1038/s41598-017-13098-5 (2017).
doi: 10.1038/s41598-017-13098-5
pubmed: 29089563
pmcid: 5663961
Naylor, K. & Eastell, R. Bone turnover markers: use in osteoporosis. Nature reviews. Rheumatology 8, 379–389, https://doi.org/10.1038/nrrheum.2012.86 (2012).
doi: 10.1038/nrrheum.2012.86
pubmed: 22664836
Merle, B. & Garnero, P. The multiple facets of periostin in bone metabolism. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 23, 1199–1212, https://doi.org/10.1007/s00198-011-1892-7 (2012).
doi: 10.1007/s00198-011-1892-7
Sykaras, N. & Opperman, L. A. Bone morphogenetic proteins (BMPs): how do they function and what can they offer the clinician? Journal of oral science 45, 57–73 (2003).
doi: 10.2334/josnusd.45.57
Bonnet, N., Garnero, P. & Ferrari, S. Periostin action in bone. Molecular and cellular endocrinology 432, 75–82, https://doi.org/10.1016/j.mce.2015.12.014 (2016).
doi: 10.1016/j.mce.2015.12.014
pubmed: 26721738
Kim, B. J. et al. Plasma periostin associates significantly with non-vertebral but not vertebral fractures in postmenopausal women: Clinical evidence for the different effects of periostin depending on the skeletal site. Bone 81, 435–441, https://doi.org/10.1016/j.bone.2015.08.014 (2015).
doi: 10.1016/j.bone.2015.08.014
pubmed: 26297442
Santos, L. F. et al. Oxytocin effects on osteoblastic differentiation of Bone Marrow Mesenchymal Stem Cells from adult and aging female Wistar rats. Experimental gerontology 113, 58–63, https://doi.org/10.1016/j.exger.2018.09.023 (2018).
doi: 10.1016/j.exger.2018.09.023
pubmed: 30267870
Bi, X. et al. Raman and mechanical properties correlate at whole bone- and tissue-levels in a genetic mouse model. Journal of biomechanics 44, 297–303, https://doi.org/10.1016/j.jbiomech.2010.10.009 (2011).
doi: 10.1016/j.jbiomech.2010.10.009
pubmed: 21035119
Khalid, M., Bora, T., Ghaithi, A. A., Thukral, S. & Dutta, J. Raman Spectroscopy detects changes in Bone Mineral Quality and Collagen Cross-linkage in Staphylococcus Infected Human. Bone. Scientific reports 8, 9417, https://doi.org/10.1038/s41598-018-27752-z (2018).
doi: 10.1038/s41598-018-27752-z
pubmed: 29925892
Burr, D. B. Changes in bone matrix properties with aging. Bone 120, 85–93, https://doi.org/10.1016/j.bone.2018.10.010 (2019).
doi: 10.1016/j.bone.2018.10.010
pubmed: 30315999
Boskey, A. L. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BoneKEy reports 2, 447, https://doi.org/10.1038/bonekey.2013.181 (2013).
doi: 10.1038/bonekey.2013.181
pubmed: 24501681
pmcid: 3909232
Fonseca, H., Moreira-Goncalves, D., Coriolano, H. J. & Duarte, J. A. Bone quality: the determinants of bone strength and fragility. Sports medicine 44, 37–53, https://doi.org/10.1007/s40279-013-0100-7 (2014).
doi: 10.1007/s40279-013-0100-7
pubmed: 24092631
Kazakia, G. J. et al. Age- and gender-related differences in cortical geometry and microstructure: Improved sensitivity by regional analysis. Bone 52, 623–631, https://doi.org/10.1016/j.bone.2012.10.031 (2013).
doi: 10.1016/j.bone.2012.10.031
pubmed: 23142360
Slyfield, C. R., Tkachenko, E. V., Wilson, D. L. & Hernandez, C. J. Three-dimensional dynamic bone histomorphometry. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 27, 486–495, https://doi.org/10.1002/jbmr.553 (2012).
doi: 10.1002/jbmr.553
Lelovas, P. P., Xanthos, T. T., Thoma, S. E., Lyritis, G. P. & Dontas, I. A. The laboratory rat as an animal model for osteoporosis research. Comparative medicine 58, 424–430 (2008).
pubmed: 19004367
pmcid: 2707131
Colli, V. C., Okamoto, R., Spritzer, P. M. & Dornelles, R. C. Oxytocin promotes bone formation during the alveolar healing process in old acyclic female rats. Archives of oral biology 57, 1290–1297, https://doi.org/10.1016/j.archoralbio.2012.03.011 (2012).
doi: 10.1016/j.archoralbio.2012.03.011
pubmed: 22525945
Peres-Ueno, M. J. et al. Effect of pre-treatment of strength training and raloxifene in periestropause on bone healing. Bone, 115285, https://doi.org/10.1016/j.bone.2020.115285 (2020).
Ervolino, E. et al. Antimicrobial photodynamic therapy improves the alveolar repair process and prevents the occurrence of osteonecrosis of the jaws after tooth extraction in senile rats treated with zoledronate. Bone 120, 101–113, https://doi.org/10.1016/j.bone.2018.10.014 (2019).
doi: 10.1016/j.bone.2018.10.014
pubmed: 30339908
Peres-Ueno, M. J. et al. Model of hindlimb unloading in adult female rats: Characterizing bone physicochemical, microstructural, and biomechanical properties. PloS one 12, e0189121, https://doi.org/10.1371/journal.pone.0189121 (2017).
doi: 10.1371/journal.pone.0189121
pubmed: 29228060
pmcid: 5724829
Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 25, 1468–1486, https://doi.org/10.1002/jbmr.141 (2010).
doi: 10.1002/jbmr.141
Turner, C. H. & Burr, D. B. Basic biomechanical measurements of bone: a tutorial. Bone 14, 595–608 (1993).
doi: 10.1016/8756-3282(93)90081-K
Shirazi-Fard, Y., Kupke, J. S., Bloomfield, S. A. & Hogan, H. A. Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse. Bone 52, 433–443, https://doi.org/10.1016/j.bone.2012.09.021 (2013).
doi: 10.1016/j.bone.2012.09.021
pubmed: 23017660