Target-responsive vasoactive probes for ultrasensitive molecular imaging.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
13 05 2020
Historique:
received: 14 08 2019
accepted: 03 04 2020
entrez: 15 5 2020
pubmed: 15 5 2020
medline: 11 8 2020
Statut: epublish

Résumé

The ability to monitor molecules volumetrically throughout the body could provide valuable biomarkers for studies of healthy function and disease, but noninvasive detection of molecular targets in living subjects often suffers from poor sensitivity or selectivity. Here we describe a family of potent imaging probes that can be activated by molecules of interest in deep tissue, providing a basis for mapping nanomolar-scale analytes without the radiation or heavy metal content associated with traditional molecular imaging agents. The probes are reversibly caged vasodilators that induce responses detectable by hemodynamic imaging; they are constructed by combining vasoactive peptides with synthetic chemical appendages and protein blocking domains. We use this architecture to create ultrasensitive biotin-responsive imaging agents, which we apply for wide-field mapping of targets in rat brains using functional magnetic resonance imaging. We also adapt the sensor design for detecting the neurotransmitter dopamine, illustrating versatility of this approach for addressing biologically important molecules.

Identifiants

pubmed: 32404879
doi: 10.1038/s41467-020-16118-7
pii: 10.1038/s41467-020-16118-7
pmc: PMC7220906
doi:

Substances chimiques

Molecular Probes 0
Neurotransmitter Agents 0
Peptides 0
Pituitary Adenylate Cyclase-Activating Polypeptide 0
Vasodilator Agents 0
Biotin 6SO6U10H04
Dopamine VTD58H1Z2X

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2399

Subventions

Organisme : NINDS NIH HHS
ID : U01 NS103470
Pays : United States
Organisme : NINDS NIH HHS
ID : UF1 NS107712
Pays : United States
Organisme : NIDA NIH HHS
ID : R90 DA023427
Pays : United States
Organisme : NIMH NIH HHS
ID : R24 MH109081
Pays : United States

Références

Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19, 1142–1153 (2016).
pubmed: 27571193 pmcid: 5557009 doi: 10.1038/nn.4359
Wang, H., Jing, M. & Li, Y. Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators. Curr. Opin. Neurobiol. 50, 171–178 (2018).
pubmed: 29627516 pmcid: 5984720 doi: 10.1016/j.conb.2018.03.010
Rice, W. L., Shcherbakova, D. M., Verkhusha, V. V. & Kumar, A. T. N. In vivo tomographic imaging of deep-seated cancer using fluorescence lifetime contrast. Cancer Res. 75, 1236–1243 (2015).
pubmed: 25670171 pmcid: 4383673 doi: 10.1158/0008-5472.CAN-14-3001
Ji, N., Freeman, J. & Smith, S. L. Technologies for imaging neural activity in large volumes. Nat. Neurosci. 19, 1154–1164 (2016).
pubmed: 27571194 pmcid: 5244827 doi: 10.1038/nn.4358
Flusberg, B. A. et al. Fiber-optic fluorescence imaging. Nat. Methods 2, 941–950 (2005).
pubmed: 16299479 pmcid: 2849801 doi: 10.1038/nmeth820
Ouzounov, D. G. et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Methods 14, 388–390 (2017).
pubmed: 28218900 pmcid: 6441362 doi: 10.1038/nmeth.4183
Phelps, M. E. Positron emission tomography provides molecular imaging of biological processes. Proc. Natl Acad. Sci. USA 97, 9226–9233 (2000).
pubmed: 10922074 doi: 10.1073/pnas.97.16.9226
Ghosh, S., Harvey, P., Simon, J. C. & Jasanoff, A. Probing the brain with molecular fMRI. Curr. Opin. Neurobiol. 50, 201–210 (2018).
pubmed: 29649765 pmcid: 6084488 doi: 10.1016/j.conb.2018.03.009
Desai, M., Slusarczyk, A. L., Chapin, A., Barch, M. & Jasanoff, A. Molecular imaging with engineered physiology. Nat. Commun. 7, 13607 (2016).
pubmed: 27910951 pmcid: 5146284 doi: 10.1038/ncomms13607
Wintermark, M. et al. Comparative overview of brain perfusion imaging techniques. J. Neuroradiol. 32, 294–314 (2005).
pubmed: 16424829 doi: 10.1016/S0150-9861(05)83159-1
Hillman, E. M. C. Optical brain imaging in vivo: techniques and applications from animal to man. J. Biomed. Opt. 12, 051402 (2007).
pubmed: 17994863 pmcid: 2435254 doi: 10.1117/1.2789693
Buxton, R. B. The physics of functional magnetic resonance imaging (fMRI). Rep. Prog. Phys. 76, 096601 (2013).
pubmed: 24006360 pmcid: 4376284 doi: 10.1088/0034-4885/76/9/096601
Deffieux, T., Demene, C., Pernot, M. & Tanter, M. Functional ultrasound neuroimaging: a review of the preclinical and clinical state of the art. Curr. Opin. Neurobiol. 50, 128–135 (2018).
pubmed: 29477979 doi: 10.1016/j.conb.2018.02.001
Robberecht, P. et al. Structural requirements for the occupancy of pituitary adenylate-cyclase-activating-peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB-OK-1 cell membranes. Eur. J. Biochem. 207, 239–246 (1992).
pubmed: 1321043 doi: 10.1111/j.1432-1033.1992.tb17043.x
Wilchek, M. & Bayer, E. A. Methods Enzymol. 184, 5–13 (1990).
Altai, M., Membreno, R., Cook, B., Tolmachev, V. & Zeglis, B. M. Pretargeted imaging and therapy. J. Nucl. Med. 58, 1553–1559 (2017).
pubmed: 28687600 pmcid: 5632733 doi: 10.2967/jnumed.117.189944
Green, N. M. Avidin. 3. The nature of the biotin-binding site. Biochem. J. 89, 599–609 (1963).
pubmed: 14101981 pmcid: 1202468 doi: 10.1042/bj0890599
Sun, C. et al. Solution structure and mutational analysis of pituitary adenylate cyclase-activating polypeptide binding to the extracellular domain of PAC1-RS. Proc. Natl. Acad. Sci. U.S.A. 104, 7875–7880 (2007).
pubmed: 17470806 doi: 10.1073/pnas.0611397104
Vaudry, D. et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev. 61, 283–357 (2009).
pubmed: 19805477 doi: 10.1124/pr.109.001370
Gourlet, P. et al. Structural requirements for the binding of the pituitary adenylate-cyclase-activating peptide to receptors and adenylate-cyclase activation in pancreatic and neuronal membranes. Eur. J. Biochem. 195, 535–541 (1991).
pubmed: 1997328 doi: 10.1111/j.1432-1033.1991.tb15734.x
Klumb, L. A., Chu, V. & Stayton, P. S. Energetic roles of hydrogen bonds at the ureido oxygen binding pocket in the streptavidin−biotin complex. Biochemistry 37, 7657–7663 (1998).
pubmed: 9601024 doi: 10.1021/bi9803123
Hofmann, K., Titus, G., Montibeller, J. A. & Finn, F. M. Avidin binding of carboxyl-substituted biotin and analogues. Biochemistry 21, 978–984 (1982).
pubmed: 7041971 doi: 10.1021/bi00534a024
Hirsch, J. D. et al. Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation. Anal. Biochem. 308, 343–357 (2002).
pubmed: 12419349 doi: 10.1016/S0003-2697(02)00201-4
Clevidence, B. A., Marshall, M. W. & Canary, J. J. Biotin levels in plasma and urine of healthy adults consuming physiological doses of biotin. Nutr. Res. 8, 1109–1118 (1988).
doi: 10.1016/S0271-5317(88)80112-X
Hai, A., Cai, L. X., Lee, T., Lelyveld, V. S. & Jasanoff, A. Molecular fMRI of Serotonin Transport. Neuron 92, 754–765 (2016).
pubmed: 27773583 pmcid: 5619697 doi: 10.1016/j.neuron.2016.09.048
Looger, L. L. et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat. Methods 16, 763–770 (2018).
De Lorimier, R. M. et al. Construction of a fluorescent biosensor family. Protein Sci. 11, 2655–2675 (2002).
pubmed: 12381848 pmcid: 2373719 doi: 10.1110/ps.021860
Marvin, J. S., Schreiter, E. R., Echevarría, I. M. & Looger, L. L. A genetically encoded, high-signal-to-noise maltose sensor. Proteins 79, 3025–3036 (2011).
pubmed: 21989929 pmcid: 3265398 doi: 10.1002/prot.23118
Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013).
pubmed: 23314171 pmcid: 4469972 doi: 10.1038/nmeth.2333
Okumoto, S. et al. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc. Natl Acad. Sci. U.S.A. 102, 8740–8745 (2005).
pubmed: 15939876 pmcid: 1143584 doi: 10.1073/pnas.0503274102
Brun, M. A. et al. A semisynthetic fluorescent sensor protein for glutamate. J. Am. Chem. Soc. 134, 7676–7678 (2012).
pubmed: 22533301 doi: 10.1021/ja3002277
Brun, M. A. et al. Semisynthesis of fluorescent metabolite sensors on cell surfaces. J. Am. Chem. Soc. 133, 16235–16242 (2011).
pubmed: 21879732 doi: 10.1021/ja206915m
Griss, R. et al. Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring. Nat. Chem. Biol. 10, 598–603 (2014).
pubmed: 24907901 doi: 10.1038/nchembio.1554
Masharina, A., Reymond, L., Maurel, D., Umezawa, K. & Johnsson, K. A fluorescent sensor for GABA and synthetic GABA
pubmed: 23095089 doi: 10.1021/ja306320s
Schena, A. & Johnsson, K. Sensing acetylcholine and anticholinesterase compounds. Angew. Chem. Int. Ed. Eng. 53, 1302–1305 (2014).
doi: 10.1002/anie.201307754
Perez, J. M., Josephson, L. & Weissleder, R. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. ChemBioChem 5, 261–264 (2004).
pubmed: 14997516 doi: 10.1002/cbic.200300730
Hsieh, V. et al. Neurotransmitter-responsive nanosensors for T
pubmed: 31523957 doi: 10.1021/jacs.9b08744
Bartelle, B. B. et al. Novel genetic approach for in vivo vascular imaging in mice. Circ. Res. 110, 938–947 (2012).
pubmed: 22374133 pmcid: 3319022 doi: 10.1161/CIRCRESAHA.111.254375
Lee, T., Cai, L. X., Lelyveld, V. S., Hai, A. & Jasanoff, A. Molecular-level functional magnetic resonance imaging of dopaminergic signaling. Science 344, 533–535 (2014).
pubmed: 24786083 doi: 10.1126/science.1249380
Davis, T. L., Kwong, K. K., Weisskoff, R. M. & Rosen, B. R. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc. Natl Acad. Sci. U.S.A. 95, 1834–1839 (1998).
pubmed: 9465103 pmcid: 19199 doi: 10.1073/pnas.95.4.1834
Hoge, R. D. et al. Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn. Reson. Med. 42, 849–863 (1999).
pubmed: 10542343 doi: 10.1002/(SICI)1522-2594(199911)42:5<849::AID-MRM4>3.0.CO;2-Z
Germuska, M. & Wise, R. G. Calibrated fMRI for mapping absolute CMRO
pubmed: 29605580 doi: 10.1016/j.neuroimage.2018.03.068
Stalder, A. F. et al. Robust cardiac BOLD MRI using an fMRI-like approach with repeated stress paradigms. Magn. Reson. Med. 73, 577–585 (2015).
pubmed: 24616025 doi: 10.1002/mrm.25164
Haque, M., Koktzoglou, I., Li, W., Carbray, J. & Prasad, P. Functional MRI of liver using BOLD MRI: effect of glucose. J. Magn. Reson. Imaging JMRI 32, 988–991 (2010).
pubmed: 20882631 doi: 10.1002/jmri.22329
Jacobi, B. et al. Skeletal muscle BOLD MRI: from underlying physiological concepts to its usefulness in clinical conditions. J. Magn. Reson. Imaging 35, 1253–1265 (2012).
pubmed: 22588992 doi: 10.1002/jmri.23536
Hall, M. E., Jordan, J. H., Juncos, L. A., Hundley, W. G. & Hall, J. E. BOLD magnetic resonance imaging in nephrology. Int. J. Nephrol. Renov. Dis. 11, 103–112 (2018).
doi: 10.2147/IJNRD.S112299
Ogawa, S., Lee, T. M., Kay, A. R. & Tank, D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U.S.A. 87, 9868–9872 (1990).
pubmed: 2124706 pmcid: 55275 doi: 10.1073/pnas.87.24.9868
Buchbinder, B. R. Functional magnetic resonance imaging. Handb. Clin. Neurol. 135, 61–92 (2016).
pubmed: 27432660 doi: 10.1016/B978-0-444-53485-9.00004-0
Banks, W. A., Kastin, A. J., Komaki, G. & Arimura, A. Passage of pituitary adenylate cyclase activating polypeptide1-27 and pituitary adenylate cyclase activating polypeptide1-38 across the blood-brain barrier. J. Pharmacol. Exp. Ther. 267, 690–696 (1993).
pubmed: 8246142
Banks, W. A., Uchida, D., Arimura, A., Somogyvári-Vigh, A. & Shioda, S. Transport of pituitary adenylate cyclase-activating polypeptide across the blood-brain barrier and the prevention of ischemia-induced death of hippocampal neurons. Ann. N. Y. Acad. Sci. 805, 270–277 (1996).
pubmed: 8993409 doi: 10.1111/j.1749-6632.1996.tb17489.x
Dogrukol-Ak, D., Tore, F. & Tuncel, N. Passage of VIP/PACAP/secretin family across the blood-brain barrier: therapeutic effects. Curr. Pharm. Des. 10, 1325–1340 (2004).
pubmed: 15134484 doi: 10.2174/1381612043384934
Chatenet, D., Fournier, A. & Bourgault, S. PACAP-Derived Carriers: Mechanisms and Applications. in Pituitary Adenylate Cyclase Activating Polypeptide — PACAP, Vol. 11 (eds Reglodi, D. & Tamas, A.) 133–148 (Springer International Publishing, 2016).
Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).
pubmed: 18985154 pmcid: 2574415 doi: 10.1371/journal.pone.0003647
Fan, F. et al. Novel genetically encoded biosensors using firefly luciferase. ACS Chem. Biol. 3, 346–351 (2008).
pubmed: 18570354 doi: 10.1021/cb8000414
Szymczak, A. L. et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide–based retroviral vector. Nat. Biotechnol. 22, 589 (2004).
pubmed: 15064769 doi: 10.1038/nbt957
Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. Int. J. 29, 162–173 (1996).
doi: 10.1006/cbmr.1996.0014
Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates - 6th edn. (Academic Press, 2007).

Auteurs

Robert Ohlendorf (R)

Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.

Agata Wiśniowska (A)

Harvard-MIT Health Sciences & Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.

Mitul Desai (M)

Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.

Ali Barandov (A)

Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.

Adrian L Slusarczyk (AL)

Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.

Nan Li (N)

Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.

Alan Jasanoff (A)

Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA. jasanoff@mit.edu.
Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA. jasanoff@mit.edu.
Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA. jasanoff@mit.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH