Robustness of a biomolecular oscillator to pulse perturbations.


Journal

IET systems biology
ISSN: 1751-8857
Titre abrégé: IET Syst Biol
Pays: England
ID NLM: 101301198

Informations de publication

Date de publication:
06 2020
Historique:
entrez: 15 5 2020
pubmed: 15 5 2020
medline: 22 6 2021
Statut: ppublish

Résumé

Biomolecular oscillators can function robustly in the presence of environmental perturbations, which can either be static or dynamic. While the effect of different circuit parameters and mechanisms on the robustness to steady perturbations has been investigated, the scenario for dynamic perturbations is relatively unclear. To address this, the authors use a benchmark three protein oscillator design - the repressilator - and investigate its robustness to pulse perturbations, computationally as well as use analytical tools of Floquet theory. They found that the metric provided by direct computations of the time it takes for the oscillator to settle after pulse perturbation is applied, correlates well with the metric provided by Floquet theory. They investigated the parametric dependence of the Floquet metric, finding that the parameters that increase the effective delay enhance robustness to pulse perturbation. They found that the structural changes such as increasing the number of proteins in a ring oscillator as well as adding positive feedback, both of which increase effective delay, facilitates such robustness. These results highlight such design principles, especially the role of delay, for designing an oscillator that is robust to pulse perturbation.

Identifiants

pubmed: 32406377
doi: 10.1049/iet-syb.2019.0029
pmc: PMC8687342
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

127-132

Références

Nature. 1997 Jun 26;387(6636):913-7
pubmed: 9202124
Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19931-5
pubmed: 18077424
J Theor Biol. 2004 Oct 21;230(4):521-32
pubmed: 15363673
PLoS One. 2014 Aug 15;9(8):e104761
pubmed: 25126951
Nature. 2000 Jan 20;403(6767):335-8
pubmed: 10659856
Mol Syst Biol. 2007;3:93
pubmed: 17353935
PLoS One. 2010 Apr 01;5(4):e9865
pubmed: 20368983
IET Syst Biol. 2018 Jun;12(3):93-100
pubmed: 29745902
Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):E3324-33
pubmed: 23150580
Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13210-5
pubmed: 15340155
PLoS One. 2012;7(4):e34616
pubmed: 22506034
Nature. 2008 Nov 27;456(7221):516-9
pubmed: 18971928
Nat Chem Biol. 2008 Aug;4(8):435-9
pubmed: 18641616
Elife. 2017 Dec 14;6:
pubmed: 29239721
Elife. 2015 Oct 05;4:e09771
pubmed: 26430766
J Theor Biol. 2001 Mar 7;209(1):29-42
pubmed: 11237568
Nature. 2016 Oct 27;538(7626):514-517
pubmed: 27732583
ACS Synth Biol. 2016 Jun 17;5(6):459-70
pubmed: 26835539
Nat Rev Mol Cell Biol. 2008 Dec;9(12):981-91
pubmed: 18971947
ACS Synth Biol. 2018 Jun 15;7(6):1481-1487
pubmed: 29676894
Biophys J. 2010 Aug 9;99(4):1034-42
pubmed: 20712986
Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10376-81
pubmed: 12124397
J Chem Phys. 2013 Feb 7;138(5):055101
pubmed: 23406149
FEBS Lett. 2011 May 20;585(10):1435-42
pubmed: 21354415

Auteurs

Soumyadip Banerjee (S)

Department of Electrical Engineering, Indian Institute of Technology, New Delhi 110016, Delhi, India.

Shaunak Sen (S)

Department of Electrical Engineering, Indian Institute of Technology, New Delhi 110016, Delhi, India. shaunak.sen@ee.iitd.ac.in.

Articles similaires

High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.

Akina Mori, Marjolein Vermeer, Lenie J van den Broek et al.
1.00
Humans Bronchi Lab-On-A-Chip Devices Epithelial Cells Goblet Cells
1.00
Algorithms Computer Simulation Models, Biological Programming Languages Humans
Regression Analysis Government Environmental Policy Humans Inventions
Humans Choice Behavior Environment Surveys and Questionnaires Female

Classifications MeSH