Robustness of a biomolecular oscillator to pulse perturbations.
Journal
IET systems biology
ISSN: 1751-8857
Titre abrégé: IET Syst Biol
Pays: England
ID NLM: 101301198
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
entrez:
15
5
2020
pubmed:
15
5
2020
medline:
22
6
2021
Statut:
ppublish
Résumé
Biomolecular oscillators can function robustly in the presence of environmental perturbations, which can either be static or dynamic. While the effect of different circuit parameters and mechanisms on the robustness to steady perturbations has been investigated, the scenario for dynamic perturbations is relatively unclear. To address this, the authors use a benchmark three protein oscillator design - the repressilator - and investigate its robustness to pulse perturbations, computationally as well as use analytical tools of Floquet theory. They found that the metric provided by direct computations of the time it takes for the oscillator to settle after pulse perturbation is applied, correlates well with the metric provided by Floquet theory. They investigated the parametric dependence of the Floquet metric, finding that the parameters that increase the effective delay enhance robustness to pulse perturbation. They found that the structural changes such as increasing the number of proteins in a ring oscillator as well as adding positive feedback, both of which increase effective delay, facilitates such robustness. These results highlight such design principles, especially the role of delay, for designing an oscillator that is robust to pulse perturbation.
Identifiants
pubmed: 32406377
doi: 10.1049/iet-syb.2019.0029
pmc: PMC8687342
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
127-132Références
Nature. 1997 Jun 26;387(6636):913-7
pubmed: 9202124
Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19931-5
pubmed: 18077424
J Theor Biol. 2004 Oct 21;230(4):521-32
pubmed: 15363673
PLoS One. 2014 Aug 15;9(8):e104761
pubmed: 25126951
Nature. 2000 Jan 20;403(6767):335-8
pubmed: 10659856
Mol Syst Biol. 2007;3:93
pubmed: 17353935
PLoS One. 2010 Apr 01;5(4):e9865
pubmed: 20368983
IET Syst Biol. 2018 Jun;12(3):93-100
pubmed: 29745902
Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):E3324-33
pubmed: 23150580
Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13210-5
pubmed: 15340155
PLoS One. 2012;7(4):e34616
pubmed: 22506034
Nature. 2008 Nov 27;456(7221):516-9
pubmed: 18971928
Nat Chem Biol. 2008 Aug;4(8):435-9
pubmed: 18641616
Elife. 2017 Dec 14;6:
pubmed: 29239721
Elife. 2015 Oct 05;4:e09771
pubmed: 26430766
J Theor Biol. 2001 Mar 7;209(1):29-42
pubmed: 11237568
Nature. 2016 Oct 27;538(7626):514-517
pubmed: 27732583
ACS Synth Biol. 2016 Jun 17;5(6):459-70
pubmed: 26835539
Nat Rev Mol Cell Biol. 2008 Dec;9(12):981-91
pubmed: 18971947
ACS Synth Biol. 2018 Jun 15;7(6):1481-1487
pubmed: 29676894
Biophys J. 2010 Aug 9;99(4):1034-42
pubmed: 20712986
Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10376-81
pubmed: 12124397
J Chem Phys. 2013 Feb 7;138(5):055101
pubmed: 23406149
FEBS Lett. 2011 May 20;585(10):1435-42
pubmed: 21354415