TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition.
Animals
Apoptosis
Cell Proliferation
DNA Methylation
DNA-Binding Proteins
/ physiology
Gene Expression Regulation, Leukemic
Histones
Humans
Mice
Mice, Inbred NOD
Mice, Knockout
Mice, SCID
Mixed Function Oxygenases
/ genetics
Phthalazines
/ pharmacology
Piperazines
/ pharmacology
Poly(ADP-ribose) Polymerase Inhibitors
/ pharmacology
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
/ drug therapy
Promoter Regions, Genetic
Proto-Oncogene Proteins
/ genetics
Tumor Cells, Cultured
Xenograft Model Antitumor Assays
Journal
Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
14
01
2020
accepted:
01
05
2020
revised:
28
04
2020
pubmed:
16
5
2020
medline:
26
2
2021
entrez:
16
5
2020
Statut:
ppublish
Résumé
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer characterized by skewed epigenetic patterns, raising the possibility of therapeutically targeting epigenetic factors in this disease. Here we report that among different cancer types, epigenetic factor TET1 is highly expressed in T-ALL and is crucial for human T-ALL cell growth in vivo. Knockout of TET1 in mice and knockdown in human T cell did not perturb normal T-cell proliferation, indicating that TET1 expression is dispensable for normal T-cell growth. The promotion of leukemic growth by TET1 was dependent on its catalytic property to maintain global 5-hydroxymethylcytosine (5hmC) marks, thereby regulate cell cycle, DNA repair genes, and T-ALL associated oncogenes. Furthermore, overexpression of the Tet1-catalytic domain was sufficient to augment global 5hmC levels and leukemic growth of T-ALL cells in vivo. We demonstrate that PARP enzymes, which are highly expressed in T-ALL patients, participate in establishing H3K4me3 marks at the TET1 promoter and that PARP1 interacts with the TET1 protein. Importantly, the growth related role of TET1 in T-ALL could be antagonized by the clinically approved PARP inhibitor Olaparib, which abrogated TET1 expression, induced loss of 5hmC marks, and antagonized leukemic growth of T-ALL cells, opening a therapeutic avenue for this disease.
Identifiants
pubmed: 32409690
doi: 10.1038/s41375-020-0864-3
pii: 10.1038/s41375-020-0864-3
doi:
Substances chimiques
DNA-Binding Proteins
0
Histones
0
Phthalazines
0
Piperazines
0
Poly(ADP-ribose) Polymerase Inhibitors
0
Proto-Oncogene Proteins
0
TET1 protein, mouse
0
histone H3 trimethyl Lys4
0
Mixed Function Oxygenases
EC 1.-
TET1 protein, human
EC 1.-
olaparib
WOH1JD9AR8
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
389-403Références
Bedford MT, van Helden PD. Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res. 1987;47:5274–6.
pubmed: 2443238
Lin CH, Hsieh SY, Sheen IS, Lee WC, Chen TC, Shyu WC, et al. Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res. 2001;61:4238–43.
pubmed: 11358850
Kim YI, Giuliano A, Hatch KD, Schneider A, Nour MA, Dallal GE, et al. Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer. 1994;74:893–9.
pubmed: 8039116
doi: 10.1002/1097-0142(19940801)74:3<893::AID-CNCR2820740316>3.0.CO;2-B
Perez RF, Tejedor JR, Bayon GF, Fernandez AF, Fraga MF. Distinct chromatin signatures of DNA hypomethylation in aging and cancer. Aging Cell. 2018;17:e12744.
pubmed: 29504244
pmcid: 5946083
doi: 10.1111/acel.12744
Zelic R, Fiano V, Grasso C, Zugna D, Pettersson A, Gillio-Tos A, et al. Global DNA hypomethylation in prostate cancer development and progression: a systematic review. Prostate Cancer Prostatic Dis. 2015;18:1–12.
pubmed: 25384337
doi: 10.1038/pcan.2014.45
Wahlfors J, Hiltunen H, Heinonen K, Hamalainen E, Alhonen L, Janne J. Genomic hypomethylation in human chronic lymphocytic leukemia. Blood. 1992;80:2074–80.
pubmed: 1382719
doi: 10.1182/blood.V80.8.2074.bloodjournal8082074
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.
pubmed: 19372391
pmcid: 2715015
doi: 10.1126/science.1170116
Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466:1129–33.
pubmed: 20639862
pmcid: 3491567
doi: 10.1038/nature09303
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3.
pubmed: 21778364
pmcid: 3495246
doi: 10.1126/science.1210597
Wu H, D’Alessio AC, Ito S, Wang Z, Cui K, Zhao K, et al. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 2011;25:679–84.
pubmed: 21460036
pmcid: 3070931
doi: 10.1101/gad.2036011
Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell. 2011;42:451–64.
pubmed: 21514197
pmcid: 3099128
doi: 10.1016/j.molcel.2011.04.005
Yang J, Guo R, Wang H, Ye X, Zhou Z, Dan J, et al. Tet enzymes regulate telomere maintenance and chromosomal stability of mouse ESCs. Cell Rep. 2016;15:1809–21.
pubmed: 27184841
doi: 10.1016/j.celrep.2016.04.058
Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20:11–24.
pubmed: 21723200
pmcid: 3194039
doi: 10.1016/j.ccr.2011.06.001
An J, Gonzalez-Avalos E, Chawla A, Jeong M, Lopez-Moyado IF, Li W, et al. Acute loss of TET function results in aggressive myeloid cancer in mice. Nat Commun. 2015;6:10071.
pubmed: 26607761
doi: 10.1038/ncomms10071
Weber AR, Krawczyk C, Robertson AB, Kusnierczyk A, Vagbo CB, Schuermann D, et al. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun. 2016;7:10806.
pubmed: 26932196
pmcid: 4778062
doi: 10.1038/ncomms10806
Neri F, Dettori D, Incarnato D, Krepelova A, Rapelli S, Maldotti M, et al. TET1 is a tumour suppressor that inhibits colon cancer growth by derepressing inhibitors of the WNT pathway. Oncogene. 2015;34:4168–76.
pubmed: 25362856
doi: 10.1038/onc.2014.356
Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016;30:733–50.
pubmed: 27036965
pmcid: 4826392
doi: 10.1101/gad.276568.115
Li Z, Cai X, Cai CL, Wang J, Zhang W, Petersen BE, et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 2011;118:4509–18.
pubmed: 21803851
pmcid: 3952630
doi: 10.1182/blood-2010-12-325241
Zhao Z, Chen L, Dawlaty MM, Pan F, Weeks O, Zhou Y, et al. Combined Loss of Tet1 and Tet2 promotes B Cell, but not myeloid malignancies, in mice. Cell Rep. 2015;13:1692–704.
pubmed: 26586431
pmcid: 4764044
doi: 10.1016/j.celrep.2015.10.037
Cimmino L, Dawlaty MM, Ndiaye-Lobry D, Yap YS, Bakogianni S, Yu Y, et al. TET1 is a tumor suppressor of hematopoietic malignancy. Nat Immunol. 2015;16:653–62.
pubmed: 25867473
pmcid: 4545281
doi: 10.1038/ni.3148
Kafer GR, Li X, Horii T, Suetake I, Tajima S, Hatada I, et al. 5-Hydroxymethylcytosine marks sites of DNA damage and promotes genome stability. Cell Rep. 2016;14:1283–92.
pubmed: 26854228
doi: 10.1016/j.celrep.2016.01.035
Wang J, Li F, Ma Z, Yu M, Guo Q, Huang J, et al. High expression of TET1 predicts poor survival in cytogenetically normal acute myeloid leukemia from two cohorts. EBioMedicine. 2018;28:90–6.
pubmed: 29402726
pmcid: 5835576
doi: 10.1016/j.ebiom.2018.01.031
Hahn MA, Qiu R, Wu X, Li AX, Zhang H, Wang J, et al. Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep. 2013;3:291–300.
pubmed: 23403289
pmcid: 3582786
doi: 10.1016/j.celrep.2013.01.011
Wu MZ, Chen SF, Nieh S, Benner C, Ger LP, Jan CI, et al. Hypoxia drives breast tumor malignancy through a TET-TNFalpha-p38-MAPK signaling axis. Cancer Res. 2015;75:3912–24.
pubmed: 26294212
doi: 10.1158/0008-5472.CAN-14-3208
Yokoyama S, Higashi M, Tsutsumida H, Wakimoto J, Hamada T, Wiest E, et al. TET1-mediated DNA hypomethylation regulates the expression of MUC4 in lung cancer. Genes Cancer. 2017;8:517–27.
pubmed: 28680536
pmcid: 5489649
doi: 10.18632/genesandcancer.139
Huang H, Jiang X, Li Z, Li Y, Song CX, He C, et al. TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc Natl Acad Sci USA. 2013;110:11994–9.
pubmed: 23818607
doi: 10.1073/pnas.1310656110
pmcid: 3718141
Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia. 2003;17:637–41.
pubmed: 12646957
doi: 10.1038/sj.leu.2402834
Jiang X, Hu C, Ferchen K, Nie J, Cui X, Chen CH, et al. Targeted inhibition of STAT/TET1 axis as a therapeutic strategy for acute myeloid leukemia. Nat Commun. 2017;8:2099.
pubmed: 29235481
pmcid: 5727390
doi: 10.1038/s41467-017-02290-w
Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49:1211–8.
pubmed: 28671688
pmcid: 5535770
doi: 10.1038/ng.3909
Peirs S, Van der Meulen J, Van de Walle I, Taghon T, Speleman F, Poppe B, et al. Epigenetics in T-cell acute lymphoblastic leukemia. Immunol Rev. 2015;263:50–67.
pubmed: 25510271
doi: 10.1111/imr.12237
Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood. 2017;129:1113–23.
pubmed: 28115373
doi: 10.1182/blood-2016-10-706465
Vitale A, Guarini A, Ariola C, Mancini M, Mecucci C, Cuneo A, et al. Adult T-cell acute lymphoblastic leukemia: biologic profile at presentation and correlation with response to induction treatment in patients enrolled in the GIMEMA LAL 0496 protocol. Blood. 2006;107:473–9.
pubmed: 16179376
doi: 10.1182/blood-2005-04-1754
Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet. 2014;46:364–70.
pubmed: 24584072
pmcid: 4086945
doi: 10.1038/ng.2913
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.
pubmed: 22460905
pmcid: 3320027
doi: 10.1038/nature11003
Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Bene MC, et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol. 2010;28:2529–37.
pubmed: 20406941
pmcid: 5569671
doi: 10.1200/JCO.2009.23.4732
Poole CJ, Lodh A, Choi JH, van Riggelen J. MYC deregulates TET1 and TET2 expression to control global DNA (hydroxy)methylation and gene expression to maintain a neoplastic phenotype in T-ALL. Epigenetics Chromatin. 2019;12:41.
pubmed: 31266538
pmcid: 6604319
doi: 10.1186/s13072-019-0278-5
Dawlaty MM, Ganz K, Powell BE, Hu YC, Markoulaki S, Cheng AW, et al. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell. 2011;9:166–75.
pubmed: 21816367
pmcid: 3154739
doi: 10.1016/j.stem.2011.07.010
Meyer LH, Eckhoff SM, Queudeville M, Kraus JM, Giordan M, Stursberg J, et al. Early relapse in ALL is identified by time to leukemia in NOD/SCID mice and is characterized by a gene signature involving survival pathways. Cancer Cell. 2011;19:206–17.
pubmed: 21295523
doi: 10.1016/j.ccr.2010.11.014
Hollingshead MG, Stockwin LH, Alcoser SY, Newton DL, Orsburn BC, Bonomi CA, et al. Gene expression profiling of 49 human tumor xenografts from in vitro culture through multiple in vivo passages-strategies for data mining in support of therapeutic studies. BMC Genom. 2014;15:393.
doi: 10.1186/1471-2164-15-393
Verma N, Pan H, Dore LC, Shukla A, Li QV, Pelham-Webb B, et al. TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nat Genet. 2018;50:83–95.
pubmed: 29203910
doi: 10.1038/s41588-017-0002-y
Nestor CE, Lentini A, Hagg Nilsson C, Gawel DR, Gustafsson M, Mattson L, et al. 5-Hydroxymethylcytosine remodeling precedes lineage specification during differentiation of human CD4(+) T cells. Cell Rep. 2016;16:559–70.
pubmed: 27346350
pmcid: 5868728
doi: 10.1016/j.celrep.2016.05.091
Giambra V, Jenkins CE, Lam SH, Hoofd C, Belmonte M, Wang X, et al. Leukemia stem cells in T-ALL require active Hif1alpha and Wnt signaling. Blood. 2015;125:3917–27.
pubmed: 25934477
pmcid: 4548498
doi: 10.1182/blood-2014-10-609370
Evangelisti C, Ricci F, Tazzari P, Tabellini G, Battistelli M, Falcieri E, et al. Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia. Leukemia. 2011;25:781–91.
pubmed: 21331075
doi: 10.1038/leu.2011.20
Ciccarone F, Valentini E, Bacalini MG, Zampieri M, Calabrese R, Guastafierro T, et al. Poly(ADP-ribosyl)ation is involved in the epigenetic control of TET1 gene transcription. Oncotarget. 2014;5:10356–67.
pubmed: 24939750
pmcid: 4279378
doi: 10.18632/oncotarget.1905
Turgeon MO, Perry NJS, Poulogiannis G. DNA damage, repair, and cancer metabolism. Front Oncol. 2018;8:15.
pubmed: 29459886
pmcid: 5807667
doi: 10.3389/fonc.2018.00015
Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front Genet. 2015;6:157.
pubmed: 25954303
pmcid: 4407582
doi: 10.3389/fgene.2015.00157
Redon CE, Dickey JS, Bonner WM, Sedelnikova OA. gamma-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res. 2009;43:1171–8.
pubmed: 20046946
pmcid: 2735274
doi: 10.1016/j.asr.2008.10.011
Banath JP, Macphail SH, Olive PL. Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines. Cancer Res. 2004;64:7144–9.
pubmed: 15466212
doi: 10.1158/0008-5472.CAN-04-1433
Jiang D, Wei S, Chen F, Zhang Y, Li J. TET3-mediated DNA oxidation promotes ATR-dependent DNA damage response. EMBO Rep. 2017;18:781–96.
pubmed: 28325772
pmcid: 5412826
doi: 10.15252/embr.201643179
Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77.
pubmed: 24120142
pmcid: 3910500
doi: 10.1016/j.cell.2013.09.034
Ciccarone F, Valentini E, Zampieri M, Caiafa P. 5mC-hydroxylase activity is influenced by the PARylation of TET1 enzyme. Oncotarget. 2015;6:24333–47.
pubmed: 26136340
pmcid: 4695189
doi: 10.18632/oncotarget.4476
Coulter JB, Lopez-Bertoni H, Kuhns KJ, Lee RS, Laterra J, Bressler JP. TET1 deficiency attenuates the DNA damage response and promotes resistance to DNA damaging agents. Epigenetics. 2017;12:854–64.
pubmed: 28758831
pmcid: 5788409
doi: 10.1080/15592294.2017.1359452
Zhong J, Li X, Cai W, Wang Y, Dong S, Yang J, et al. TET1 modulates H4K16 acetylation by controlling auto-acetylation of hMOF to affect gene regulation and DNA repair function. Nucleic Acids Res. 2017;45:672–84.
pubmed: 27733505
doi: 10.1093/nar/gkw919
Tsagaratou A, Gonzalez-Avalos E, Rautio S, Scott-Browne JP, Togher S, Pastor WA, et al. TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nat Immunol. 2017;18:45–53.
pubmed: 27869820
doi: 10.1038/ni.3630
Tsagaratou A, Lio CJ, Yue X, Rao A. TET methylcytosine oxidases in T cell and B cell development and function. Front Immunol. 2017;8:220.
pubmed: 28408905
pmcid: 5374156
doi: 10.3389/fimmu.2017.00220
Yue X, Trifari S, Aijo T, Tsagaratou A, Pastor WA, Zepeda-Martinez JA, et al. Control of Foxp3 stability through modulation of TET activity. J Exp Med. 2016;213:377–97.
pubmed: 26903244
pmcid: 4813667
doi: 10.1084/jem.20151438
Roper SJ, Chrysanthou S, Senner CE, Sienerth A, Gnan S, Murray A, et al. ADP-ribosyltransferases Parp1 and Parp7 safeguard pluripotency of ES cells. Nucleic Acids Res. 2014;42:8914–27.
pubmed: 25034692
pmcid: 4132717
doi: 10.1093/nar/gku591
Parvin S, Ramirez-Labrada A, Aumann S, Lu X, Weich N, Santiago G, et al. LMO2 confers synthetic lethality to PARP inhibition in DLBCL. Cancer Cell. 2019;36:237–49 e236.
pubmed: 31447348
pmcid: 6752209
doi: 10.1016/j.ccell.2019.07.007
Nile DL, Rae C, Hyndman IJ, Gaze MN, Mairs RJ. An evaluation in vitro of PARP-1 inhibitors, rucaparib and olaparib, as radiosensitisers for the treatment of neuroblastoma. BMC Cancer. 2016;16:621.
pubmed: 27515310
pmcid: 4982014
doi: 10.1186/s12885-016-2656-8
Sanmartin E, Munoz L, Piqueras M, Sirerol JA, Berlanga P, Canete A, et al. Deletion of 11q in neuroblastomas drives sensitivity to PARP inhibition. Clin Cancer Res. 2017;23:6875–87.
pubmed: 28830922
doi: 10.1158/1078-0432.CCR-17-0593
Jiang Y, Dai H, Li Y, Yin J, Guo S, Lin SY, et al. PARP inhibitors synergize with gemcitabine by potentiating DNA damage in non-small-cell lung cancer. Int J Cancer. 2019;144:1092–103.
pubmed: 30152517
doi: 10.1002/ijc.31770
Pietanza MC, Waqar SN, Krug LM, Dowlati A, Hann CL, Chiappori A, et al. Randomized, double-blind, phase II study of temozolomide in combination with either veliparib or placebo in patients with relapsed-sensitive or refractory small-cell lung cancer. J Clin Oncol. 2018;36:2386–94.
pubmed: 29906251
pmcid: 6085179
doi: 10.1200/JCO.2018.77.7672
Colicchia V, Petroni M, Guarguaglini G, Sardina F, Sahun-Roncero M, Carbonari M, et al. PARP inhibitors enhance replication stress and cause mitotic catastrophe in MYCN-dependent neuroblastoma. Oncogene. 2017;36:4682–91.
pubmed: 28394338
doi: 10.1038/onc.2017.40