TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition.


Journal

Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895

Informations de publication

Date de publication:
02 2021
Historique:
received: 14 01 2020
accepted: 01 05 2020
revised: 28 04 2020
pubmed: 16 5 2020
medline: 26 2 2021
entrez: 16 5 2020
Statut: ppublish

Résumé

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer characterized by skewed epigenetic patterns, raising the possibility of therapeutically targeting epigenetic factors in this disease. Here we report that among different cancer types, epigenetic factor TET1 is highly expressed in T-ALL and is crucial for human T-ALL cell growth in vivo. Knockout of TET1 in mice and knockdown in human T cell did not perturb normal T-cell proliferation, indicating that TET1 expression is dispensable for normal T-cell growth. The promotion of leukemic growth by TET1 was dependent on its catalytic property to maintain global 5-hydroxymethylcytosine (5hmC) marks, thereby regulate cell cycle, DNA repair genes, and T-ALL associated oncogenes. Furthermore, overexpression of the Tet1-catalytic domain was sufficient to augment global 5hmC levels and leukemic growth of T-ALL cells in vivo. We demonstrate that PARP enzymes, which are highly expressed in T-ALL patients, participate in establishing H3K4me3 marks at the TET1 promoter and that PARP1 interacts with the TET1 protein. Importantly, the growth related role of TET1 in T-ALL could be antagonized by the clinically approved PARP inhibitor Olaparib, which abrogated TET1 expression, induced loss of 5hmC marks, and antagonized leukemic growth of T-ALL cells, opening a therapeutic avenue for this disease.

Identifiants

pubmed: 32409690
doi: 10.1038/s41375-020-0864-3
pii: 10.1038/s41375-020-0864-3
doi:

Substances chimiques

DNA-Binding Proteins 0
Histones 0
Phthalazines 0
Piperazines 0
Poly(ADP-ribose) Polymerase Inhibitors 0
Proto-Oncogene Proteins 0
TET1 protein, mouse 0
histone H3 trimethyl Lys4 0
Mixed Function Oxygenases EC 1.-
TET1 protein, human EC 1.-
olaparib WOH1JD9AR8

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

389-403

Références

Bedford MT, van Helden PD. Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res. 1987;47:5274–6.
pubmed: 2443238
Lin CH, Hsieh SY, Sheen IS, Lee WC, Chen TC, Shyu WC, et al. Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res. 2001;61:4238–43.
pubmed: 11358850
Kim YI, Giuliano A, Hatch KD, Schneider A, Nour MA, Dallal GE, et al. Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer. 1994;74:893–9.
pubmed: 8039116 doi: 10.1002/1097-0142(19940801)74:3<893::AID-CNCR2820740316>3.0.CO;2-B
Perez RF, Tejedor JR, Bayon GF, Fernandez AF, Fraga MF. Distinct chromatin signatures of DNA hypomethylation in aging and cancer. Aging Cell. 2018;17:e12744.
pubmed: 29504244 pmcid: 5946083 doi: 10.1111/acel.12744
Zelic R, Fiano V, Grasso C, Zugna D, Pettersson A, Gillio-Tos A, et al. Global DNA hypomethylation in prostate cancer development and progression: a systematic review. Prostate Cancer Prostatic Dis. 2015;18:1–12.
pubmed: 25384337 doi: 10.1038/pcan.2014.45
Wahlfors J, Hiltunen H, Heinonen K, Hamalainen E, Alhonen L, Janne J. Genomic hypomethylation in human chronic lymphocytic leukemia. Blood. 1992;80:2074–80.
pubmed: 1382719 doi: 10.1182/blood.V80.8.2074.bloodjournal8082074
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.
pubmed: 19372391 pmcid: 2715015 doi: 10.1126/science.1170116
Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466:1129–33.
pubmed: 20639862 pmcid: 3491567 doi: 10.1038/nature09303
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3.
pubmed: 21778364 pmcid: 3495246 doi: 10.1126/science.1210597
Wu H, D’Alessio AC, Ito S, Wang Z, Cui K, Zhao K, et al. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 2011;25:679–84.
pubmed: 21460036 pmcid: 3070931 doi: 10.1101/gad.2036011
Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell. 2011;42:451–64.
pubmed: 21514197 pmcid: 3099128 doi: 10.1016/j.molcel.2011.04.005
Yang J, Guo R, Wang H, Ye X, Zhou Z, Dan J, et al. Tet enzymes regulate telomere maintenance and chromosomal stability of mouse ESCs. Cell Rep. 2016;15:1809–21.
pubmed: 27184841 doi: 10.1016/j.celrep.2016.04.058
Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20:11–24.
pubmed: 21723200 pmcid: 3194039 doi: 10.1016/j.ccr.2011.06.001
An J, Gonzalez-Avalos E, Chawla A, Jeong M, Lopez-Moyado IF, Li W, et al. Acute loss of TET function results in aggressive myeloid cancer in mice. Nat Commun. 2015;6:10071.
pubmed: 26607761 doi: 10.1038/ncomms10071
Weber AR, Krawczyk C, Robertson AB, Kusnierczyk A, Vagbo CB, Schuermann D, et al. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun. 2016;7:10806.
pubmed: 26932196 pmcid: 4778062 doi: 10.1038/ncomms10806
Neri F, Dettori D, Incarnato D, Krepelova A, Rapelli S, Maldotti M, et al. TET1 is a tumour suppressor that inhibits colon cancer growth by derepressing inhibitors of the WNT pathway. Oncogene. 2015;34:4168–76.
pubmed: 25362856 doi: 10.1038/onc.2014.356
Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016;30:733–50.
pubmed: 27036965 pmcid: 4826392 doi: 10.1101/gad.276568.115
Li Z, Cai X, Cai CL, Wang J, Zhang W, Petersen BE, et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 2011;118:4509–18.
pubmed: 21803851 pmcid: 3952630 doi: 10.1182/blood-2010-12-325241
Zhao Z, Chen L, Dawlaty MM, Pan F, Weeks O, Zhou Y, et al. Combined Loss of Tet1 and Tet2 promotes B Cell, but not myeloid malignancies, in mice. Cell Rep. 2015;13:1692–704.
pubmed: 26586431 pmcid: 4764044 doi: 10.1016/j.celrep.2015.10.037
Cimmino L, Dawlaty MM, Ndiaye-Lobry D, Yap YS, Bakogianni S, Yu Y, et al. TET1 is a tumor suppressor of hematopoietic malignancy. Nat Immunol. 2015;16:653–62.
pubmed: 25867473 pmcid: 4545281 doi: 10.1038/ni.3148
Kafer GR, Li X, Horii T, Suetake I, Tajima S, Hatada I, et al. 5-Hydroxymethylcytosine marks sites of DNA damage and promotes genome stability. Cell Rep. 2016;14:1283–92.
pubmed: 26854228 doi: 10.1016/j.celrep.2016.01.035
Wang J, Li F, Ma Z, Yu M, Guo Q, Huang J, et al. High expression of TET1 predicts poor survival in cytogenetically normal acute myeloid leukemia from two cohorts. EBioMedicine. 2018;28:90–6.
pubmed: 29402726 pmcid: 5835576 doi: 10.1016/j.ebiom.2018.01.031
Hahn MA, Qiu R, Wu X, Li AX, Zhang H, Wang J, et al. Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep. 2013;3:291–300.
pubmed: 23403289 pmcid: 3582786 doi: 10.1016/j.celrep.2013.01.011
Wu MZ, Chen SF, Nieh S, Benner C, Ger LP, Jan CI, et al. Hypoxia drives breast tumor malignancy through a TET-TNFalpha-p38-MAPK signaling axis. Cancer Res. 2015;75:3912–24.
pubmed: 26294212 doi: 10.1158/0008-5472.CAN-14-3208
Yokoyama S, Higashi M, Tsutsumida H, Wakimoto J, Hamada T, Wiest E, et al. TET1-mediated DNA hypomethylation regulates the expression of MUC4 in lung cancer. Genes Cancer. 2017;8:517–27.
pubmed: 28680536 pmcid: 5489649 doi: 10.18632/genesandcancer.139
Huang H, Jiang X, Li Z, Li Y, Song CX, He C, et al. TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc Natl Acad Sci USA. 2013;110:11994–9.
pubmed: 23818607 doi: 10.1073/pnas.1310656110 pmcid: 3718141
Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia. 2003;17:637–41.
pubmed: 12646957 doi: 10.1038/sj.leu.2402834
Jiang X, Hu C, Ferchen K, Nie J, Cui X, Chen CH, et al. Targeted inhibition of STAT/TET1 axis as a therapeutic strategy for acute myeloid leukemia. Nat Commun. 2017;8:2099.
pubmed: 29235481 pmcid: 5727390 doi: 10.1038/s41467-017-02290-w
Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49:1211–8.
pubmed: 28671688 pmcid: 5535770 doi: 10.1038/ng.3909
Peirs S, Van der Meulen J, Van de Walle I, Taghon T, Speleman F, Poppe B, et al. Epigenetics in T-cell acute lymphoblastic leukemia. Immunol Rev. 2015;263:50–67.
pubmed: 25510271 doi: 10.1111/imr.12237
Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood. 2017;129:1113–23.
pubmed: 28115373 doi: 10.1182/blood-2016-10-706465
Vitale A, Guarini A, Ariola C, Mancini M, Mecucci C, Cuneo A, et al. Adult T-cell acute lymphoblastic leukemia: biologic profile at presentation and correlation with response to induction treatment in patients enrolled in the GIMEMA LAL 0496 protocol. Blood. 2006;107:473–9.
pubmed: 16179376 doi: 10.1182/blood-2005-04-1754
Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet. 2014;46:364–70.
pubmed: 24584072 pmcid: 4086945 doi: 10.1038/ng.2913
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.
pubmed: 22460905 pmcid: 3320027 doi: 10.1038/nature11003
Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Bene MC, et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol. 2010;28:2529–37.
pubmed: 20406941 pmcid: 5569671 doi: 10.1200/JCO.2009.23.4732
Poole CJ, Lodh A, Choi JH, van Riggelen J. MYC deregulates TET1 and TET2 expression to control global DNA (hydroxy)methylation and gene expression to maintain a neoplastic phenotype in T-ALL. Epigenetics Chromatin. 2019;12:41.
pubmed: 31266538 pmcid: 6604319 doi: 10.1186/s13072-019-0278-5
Dawlaty MM, Ganz K, Powell BE, Hu YC, Markoulaki S, Cheng AW, et al. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell. 2011;9:166–75.
pubmed: 21816367 pmcid: 3154739 doi: 10.1016/j.stem.2011.07.010
Meyer LH, Eckhoff SM, Queudeville M, Kraus JM, Giordan M, Stursberg J, et al. Early relapse in ALL is identified by time to leukemia in NOD/SCID mice and is characterized by a gene signature involving survival pathways. Cancer Cell. 2011;19:206–17.
pubmed: 21295523 doi: 10.1016/j.ccr.2010.11.014
Hollingshead MG, Stockwin LH, Alcoser SY, Newton DL, Orsburn BC, Bonomi CA, et al. Gene expression profiling of 49 human tumor xenografts from in vitro culture through multiple in vivo passages-strategies for data mining in support of therapeutic studies. BMC Genom. 2014;15:393.
doi: 10.1186/1471-2164-15-393
Verma N, Pan H, Dore LC, Shukla A, Li QV, Pelham-Webb B, et al. TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nat Genet. 2018;50:83–95.
pubmed: 29203910 doi: 10.1038/s41588-017-0002-y
Nestor CE, Lentini A, Hagg Nilsson C, Gawel DR, Gustafsson M, Mattson L, et al. 5-Hydroxymethylcytosine remodeling precedes lineage specification during differentiation of human CD4(+) T cells. Cell Rep. 2016;16:559–70.
pubmed: 27346350 pmcid: 5868728 doi: 10.1016/j.celrep.2016.05.091
Giambra V, Jenkins CE, Lam SH, Hoofd C, Belmonte M, Wang X, et al. Leukemia stem cells in T-ALL require active Hif1alpha and Wnt signaling. Blood. 2015;125:3917–27.
pubmed: 25934477 pmcid: 4548498 doi: 10.1182/blood-2014-10-609370
Evangelisti C, Ricci F, Tazzari P, Tabellini G, Battistelli M, Falcieri E, et al. Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia. Leukemia. 2011;25:781–91.
pubmed: 21331075 doi: 10.1038/leu.2011.20
Ciccarone F, Valentini E, Bacalini MG, Zampieri M, Calabrese R, Guastafierro T, et al. Poly(ADP-ribosyl)ation is involved in the epigenetic control of TET1 gene transcription. Oncotarget. 2014;5:10356–67.
pubmed: 24939750 pmcid: 4279378 doi: 10.18632/oncotarget.1905
Turgeon MO, Perry NJS, Poulogiannis G. DNA damage, repair, and cancer metabolism. Front Oncol. 2018;8:15.
pubmed: 29459886 pmcid: 5807667 doi: 10.3389/fonc.2018.00015
Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front Genet. 2015;6:157.
pubmed: 25954303 pmcid: 4407582 doi: 10.3389/fgene.2015.00157
Redon CE, Dickey JS, Bonner WM, Sedelnikova OA. gamma-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res. 2009;43:1171–8.
pubmed: 20046946 pmcid: 2735274 doi: 10.1016/j.asr.2008.10.011
Banath JP, Macphail SH, Olive PL. Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines. Cancer Res. 2004;64:7144–9.
pubmed: 15466212 doi: 10.1158/0008-5472.CAN-04-1433
Jiang D, Wei S, Chen F, Zhang Y, Li J. TET3-mediated DNA oxidation promotes ATR-dependent DNA damage response. EMBO Rep. 2017;18:781–96.
pubmed: 28325772 pmcid: 5412826 doi: 10.15252/embr.201643179
Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77.
pubmed: 24120142 pmcid: 3910500 doi: 10.1016/j.cell.2013.09.034
Ciccarone F, Valentini E, Zampieri M, Caiafa P. 5mC-hydroxylase activity is influenced by the PARylation of TET1 enzyme. Oncotarget. 2015;6:24333–47.
pubmed: 26136340 pmcid: 4695189 doi: 10.18632/oncotarget.4476
Coulter JB, Lopez-Bertoni H, Kuhns KJ, Lee RS, Laterra J, Bressler JP. TET1 deficiency attenuates the DNA damage response and promotes resistance to DNA damaging agents. Epigenetics. 2017;12:854–64.
pubmed: 28758831 pmcid: 5788409 doi: 10.1080/15592294.2017.1359452
Zhong J, Li X, Cai W, Wang Y, Dong S, Yang J, et al. TET1 modulates H4K16 acetylation by controlling auto-acetylation of hMOF to affect gene regulation and DNA repair function. Nucleic Acids Res. 2017;45:672–84.
pubmed: 27733505 doi: 10.1093/nar/gkw919
Tsagaratou A, Gonzalez-Avalos E, Rautio S, Scott-Browne JP, Togher S, Pastor WA, et al. TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nat Immunol. 2017;18:45–53.
pubmed: 27869820 doi: 10.1038/ni.3630
Tsagaratou A, Lio CJ, Yue X, Rao A. TET methylcytosine oxidases in T cell and B cell development and function. Front Immunol. 2017;8:220.
pubmed: 28408905 pmcid: 5374156 doi: 10.3389/fimmu.2017.00220
Yue X, Trifari S, Aijo T, Tsagaratou A, Pastor WA, Zepeda-Martinez JA, et al. Control of Foxp3 stability through modulation of TET activity. J Exp Med. 2016;213:377–97.
pubmed: 26903244 pmcid: 4813667 doi: 10.1084/jem.20151438
Roper SJ, Chrysanthou S, Senner CE, Sienerth A, Gnan S, Murray A, et al. ADP-ribosyltransferases Parp1 and Parp7 safeguard pluripotency of ES cells. Nucleic Acids Res. 2014;42:8914–27.
pubmed: 25034692 pmcid: 4132717 doi: 10.1093/nar/gku591
Parvin S, Ramirez-Labrada A, Aumann S, Lu X, Weich N, Santiago G, et al. LMO2 confers synthetic lethality to PARP inhibition in DLBCL. Cancer Cell. 2019;36:237–49 e236.
pubmed: 31447348 pmcid: 6752209 doi: 10.1016/j.ccell.2019.07.007
Nile DL, Rae C, Hyndman IJ, Gaze MN, Mairs RJ. An evaluation in vitro of PARP-1 inhibitors, rucaparib and olaparib, as radiosensitisers for the treatment of neuroblastoma. BMC Cancer. 2016;16:621.
pubmed: 27515310 pmcid: 4982014 doi: 10.1186/s12885-016-2656-8
Sanmartin E, Munoz L, Piqueras M, Sirerol JA, Berlanga P, Canete A, et al. Deletion of 11q in neuroblastomas drives sensitivity to PARP inhibition. Clin Cancer Res. 2017;23:6875–87.
pubmed: 28830922 doi: 10.1158/1078-0432.CCR-17-0593
Jiang Y, Dai H, Li Y, Yin J, Guo S, Lin SY, et al. PARP inhibitors synergize with gemcitabine by potentiating DNA damage in non-small-cell lung cancer. Int J Cancer. 2019;144:1092–103.
pubmed: 30152517 doi: 10.1002/ijc.31770
Pietanza MC, Waqar SN, Krug LM, Dowlati A, Hann CL, Chiappori A, et al. Randomized, double-blind, phase II study of temozolomide in combination with either veliparib or placebo in patients with relapsed-sensitive or refractory small-cell lung cancer. J Clin Oncol. 2018;36:2386–94.
pubmed: 29906251 pmcid: 6085179 doi: 10.1200/JCO.2018.77.7672
Colicchia V, Petroni M, Guarguaglini G, Sardina F, Sahun-Roncero M, Carbonari M, et al. PARP inhibitors enhance replication stress and cause mitotic catastrophe in MYCN-dependent neuroblastoma. Oncogene. 2017;36:4682–91.
pubmed: 28394338 doi: 10.1038/onc.2017.40

Auteurs

Shiva Bamezai (S)

Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany.

Deniz Demir (D)

Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany.

Alex Jose Pulikkottil (AJ)

Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany.

Fabio Ciccarone (F)

Department of Biology, University of Rome "Tor Vergata", Rome, Italy.

Elena Fischbein (E)

Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany.

Amit Sinha (A)

Basepair, New York, NY, USA.

Chiara Borga (C)

Department of Women's and Children's Health, University of Padova, Padova, Italy.

Geertruy Te Kronnie (G)

Department of Women's and Children's Health, University of Padova, Padova, Italy.

Lüder-Hinrich Meyer (LH)

Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.

Fabian Mohr (F)

Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany.

Maria Götze (M)

Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany.

Paola Caiafa (P)

Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy.

Klaus-Michael Debatin (KM)

Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.

Konstanze Döhner (K)

Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany.

Hartmut Döhner (H)

Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany.

Irene González-Menéndez (I)

Institute of Pathology, University of Tübingen, 72076, Tübingen, Germany.

Leticia Quintanilla-Fend (L)

Institute of Pathology, University of Tübingen, 72076, Tübingen, Germany.

Tobias Herold (T)

Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.
Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health (HMGU), Munich, Germany.

Irmela Jeremias (I)

Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health (HMGU), Munich, Germany.
Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany.
German Consortium for Translational Cancer Research (DKTK), Partnering Site Munich, Munich, Germany.

Michaela Feuring-Buske (M)

Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany.

Christian Buske (C)

Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany. christian.buske@uni-ulm.de.

Vijay P S Rawat (VPS)

Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany. vijay.rawat@uni-ulm.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH