Generation of Cellular Reactive Oxygen Species by Activation of the EP2 Receptor Contributes to Prostaglandin E2-Induced Cytotoxicity in Motor Neuron-Like NSC-34 Cells.
Acetylcysteine
/ pharmacology
Animals
Caspase 3
/ metabolism
Cell Death
/ drug effects
Cell Differentiation
/ drug effects
Cell Line
Cyclic AMP
/ metabolism
Dinoprostone
/ toxicity
L-Lactate Dehydrogenase
/ metabolism
Mice
Motor Neurons
/ drug effects
Protein Isoforms
/ genetics
RNA, Messenger
/ genetics
Reactive Oxygen Species
/ metabolism
Receptors, Prostaglandin E, EP2 Subtype
/ agonists
Receptors, Prostaglandin E, EP3 Subtype
/ genetics
Journal
Oxidative medicine and cellular longevity
ISSN: 1942-0994
Titre abrégé: Oxid Med Cell Longev
Pays: United States
ID NLM: 101479826
Informations de publication
Date de publication:
2020
2020
Historique:
received:
26
04
2019
revised:
19
07
2019
accepted:
07
09
2019
entrez:
16
5
2020
pubmed:
16
5
2020
medline:
9
1
2021
Statut:
epublish
Résumé
Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease characterized by progressive degeneration of motor neurons in the central nervous system. Prostaglandin E2 (PGE2) plays a pivotal role in the degeneration of motor neurons in human and transgenic models of ALS. We have shown previously that PGE2 directly induces neuronal death through activation of the E-prostanoid (EP) 2 receptor in differentiated NSC-34 cells, a motor neuron-like cell line. In the present study, to clarify the mechanisms underlying PGE2-induced neurotoxicity, we focused on generation of intracellular reactive oxygen species (ROS) and examined the effects of N-acetylcysteine (NAC), a cell-permeable antioxidant, on PGE2-induced cell death in differentiated NSC-34 cells. Dichlorofluorescein (DCF) fluorescence analysis of PGE2-treated cells showed that intracellular ROS levels increased markedly with time, and that this effect was antagonized by a selective EP2 antagonist (PF-04418948) but not a selective EP3 antagonist (L-798,106). Although an EP2-selective agonist, butaprost, mimicked the effect of PGE2, an EP1/EP3 agonist, sulprostone, transiently but significantly decreased the level of intracellular ROS in these cells. MTT reduction assay and lactate dehydrogenase release assay revealed that PGE2- and butaprost-induced cell death were each suppressed by pretreatment with NAC in a concentration-dependent manner. Western blot analysis revealed that the active form of caspase-3 was markedly increased in the PGE2- and butaprost-treated cells. These increases in caspase-3 protein expression were suppressed by pretreatment with NAC. Moreover, dibutyryl-cAMP treatment of differentiated NSC-34 cells caused intracellular ROS generation and cell death. Our data reveal the existence of a PGE2-EP2 signaling-dependent intracellular ROS generation pathway, with subsequent activation of the caspase-3 cascade, in differentiated NSC-34 cells, suggesting that PGE2 is likely a key molecule linking inflammation to oxidative stress in motor neuron-like NSC-34 cells.
Identifiants
pubmed: 32411331
doi: 10.1155/2020/6101838
pmc: PMC7201578
doi:
Substances chimiques
Protein Isoforms
0
RNA, Messenger
0
Reactive Oxygen Species
0
Receptors, Prostaglandin E, EP2 Subtype
0
Receptors, Prostaglandin E, EP3 Subtype
0
Cyclic AMP
E0399OZS9N
L-Lactate Dehydrogenase
EC 1.1.1.27
Caspase 3
EC 3.4.22.-
Dinoprostone
K7Q1JQR04M
Acetylcysteine
WYQ7N0BPYC
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6101838Informations de copyright
Copyright © 2020 Yasuhiro Kosuge et al.
Déclaration de conflit d'intérêts
The authors declare that they have no conflicts of interest.
Références
Neurochem Int. 2013 Jun;62(8):1029-38
pubmed: 23562846
Mayo Clin Proc. 2018 Nov;93(11):1617-1628
pubmed: 30401437
J Neurochem. 2004 Feb;88(3):576-82
pubmed: 14720207
Acta Neurol Scand. 2003 Aug;108(2):125-9
pubmed: 12859290
Free Radic Biol Med. 2009 Apr 15;46(8):1127-38
pubmed: 19439221
Neurology. 2002 Apr 23;58(8):1277-9
pubmed: 11971099
J Pharmacol Sci. 2012;118(2):225-36
pubmed: 22302024
Nat Rev Neurol. 2011 Nov;7(11):616-30
pubmed: 22051914
Int J Mol Sci. 2013 Dec 16;14(12):24438-75
pubmed: 24351827
Mol Cell Endocrinol. 2016 Oct 15;434:154-65
pubmed: 27329155
J Pharmacol Sci. 2017 Oct;135(2):64-71
pubmed: 28966102
J Neurochem. 2012 Sep;122(5):952-61
pubmed: 22537108
Neurosci Lett. 2008 Aug 15;441(1):44-9
pubmed: 18597941
Pharmacol Ther. 2019 Jan;193:1-19
pubmed: 30081047
Neuroscience. 2003;122(4):885-95
pubmed: 14643758
Neurobiol Dis. 2019 Apr;124:81-92
pubmed: 30423474
Arterioscler Thromb Vasc Biol. 2011 May;31(5):986-1000
pubmed: 21508345
Toxicol Lett. 2017 Sep 5;279:107-114
pubmed: 28751209
Antioxid Redox Signal. 2006 Nov-Dec;8(11-12):2075-87
pubmed: 17034351
J Biol Chem. 2007 Apr 20;282(16):11613-7
pubmed: 17329241
Neurochem Res. 2017 Dec;42(12):3504-3514
pubmed: 29019035
Cell Mol Life Sci. 2014 Mar;71(6):999-1015
pubmed: 24100629
Neurochem Int. 2018 Oct;119:132-139
pubmed: 28687401
Biol Pharm Bull. 2012;35(12):2170-9
pubmed: 23207769
J Alzheimers Dis. 2004 Apr;6(2):147-57
pubmed: 15096698
J Pharmacol Sci. 2013;121(4):347-50
pubmed: 23514786
Cell Death Differ. 2017 Aug;24(8):1359-1368
pubmed: 28338655
Cell Mol Neurobiol. 2017 Apr;37(3):445-452
pubmed: 27140190
Biol Pharm Bull. 2015;38(12):1964-8
pubmed: 26632188
Neurochem Int. 2004 Oct;45(5):713-9
pubmed: 15234114
Oxid Med Cell Longev. 2016;2016:5698931
pubmed: 26881031
Oncotarget. 2017 Mar 21;8(12):20067-20085
pubmed: 28223543
Physiol Rev. 1999 Oct;79(4):1193-226
pubmed: 10508233
Exp Neurol. 2005 Jun;193(2):279-90
pubmed: 15869932
Biochim Biophys Acta. 2005 Apr 15;1743(3):291-304
pubmed: 15843042
Oxid Med Cell Longev. 2013;2013:408681
pubmed: 23533690
Dev Dyn. 1992 Jul;194(3):209-21
pubmed: 1467557
Front Immunol. 2017 Aug 21;8:1005
pubmed: 28871262
J Biol Chem. 2001 Apr 13;276(15):12076-83
pubmed: 11278531