Generation of Cellular Reactive Oxygen Species by Activation of the EP2 Receptor Contributes to Prostaglandin E2-Induced Cytotoxicity in Motor Neuron-Like NSC-34 Cells.


Journal

Oxidative medicine and cellular longevity
ISSN: 1942-0994
Titre abrégé: Oxid Med Cell Longev
Pays: United States
ID NLM: 101479826

Informations de publication

Date de publication:
2020
Historique:
received: 26 04 2019
revised: 19 07 2019
accepted: 07 09 2019
entrez: 16 5 2020
pubmed: 16 5 2020
medline: 9 1 2021
Statut: epublish

Résumé

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease characterized by progressive degeneration of motor neurons in the central nervous system. Prostaglandin E2 (PGE2) plays a pivotal role in the degeneration of motor neurons in human and transgenic models of ALS. We have shown previously that PGE2 directly induces neuronal death through activation of the E-prostanoid (EP) 2 receptor in differentiated NSC-34 cells, a motor neuron-like cell line. In the present study, to clarify the mechanisms underlying PGE2-induced neurotoxicity, we focused on generation of intracellular reactive oxygen species (ROS) and examined the effects of N-acetylcysteine (NAC), a cell-permeable antioxidant, on PGE2-induced cell death in differentiated NSC-34 cells. Dichlorofluorescein (DCF) fluorescence analysis of PGE2-treated cells showed that intracellular ROS levels increased markedly with time, and that this effect was antagonized by a selective EP2 antagonist (PF-04418948) but not a selective EP3 antagonist (L-798,106). Although an EP2-selective agonist, butaprost, mimicked the effect of PGE2, an EP1/EP3 agonist, sulprostone, transiently but significantly decreased the level of intracellular ROS in these cells. MTT reduction assay and lactate dehydrogenase release assay revealed that PGE2- and butaprost-induced cell death were each suppressed by pretreatment with NAC in a concentration-dependent manner. Western blot analysis revealed that the active form of caspase-3 was markedly increased in the PGE2- and butaprost-treated cells. These increases in caspase-3 protein expression were suppressed by pretreatment with NAC. Moreover, dibutyryl-cAMP treatment of differentiated NSC-34 cells caused intracellular ROS generation and cell death. Our data reveal the existence of a PGE2-EP2 signaling-dependent intracellular ROS generation pathway, with subsequent activation of the caspase-3 cascade, in differentiated NSC-34 cells, suggesting that PGE2 is likely a key molecule linking inflammation to oxidative stress in motor neuron-like NSC-34 cells.

Identifiants

pubmed: 32411331
doi: 10.1155/2020/6101838
pmc: PMC7201578
doi:

Substances chimiques

Protein Isoforms 0
RNA, Messenger 0
Reactive Oxygen Species 0
Receptors, Prostaglandin E, EP2 Subtype 0
Receptors, Prostaglandin E, EP3 Subtype 0
Cyclic AMP E0399OZS9N
L-Lactate Dehydrogenase EC 1.1.1.27
Caspase 3 EC 3.4.22.-
Dinoprostone K7Q1JQR04M
Acetylcysteine WYQ7N0BPYC

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6101838

Informations de copyright

Copyright © 2020 Yasuhiro Kosuge et al.

Déclaration de conflit d'intérêts

The authors declare that they have no conflicts of interest.

Références

Neurochem Int. 2013 Jun;62(8):1029-38
pubmed: 23562846
Mayo Clin Proc. 2018 Nov;93(11):1617-1628
pubmed: 30401437
J Neurochem. 2004 Feb;88(3):576-82
pubmed: 14720207
Acta Neurol Scand. 2003 Aug;108(2):125-9
pubmed: 12859290
Free Radic Biol Med. 2009 Apr 15;46(8):1127-38
pubmed: 19439221
Neurology. 2002 Apr 23;58(8):1277-9
pubmed: 11971099
J Pharmacol Sci. 2012;118(2):225-36
pubmed: 22302024
Nat Rev Neurol. 2011 Nov;7(11):616-30
pubmed: 22051914
Int J Mol Sci. 2013 Dec 16;14(12):24438-75
pubmed: 24351827
Mol Cell Endocrinol. 2016 Oct 15;434:154-65
pubmed: 27329155
J Pharmacol Sci. 2017 Oct;135(2):64-71
pubmed: 28966102
J Neurochem. 2012 Sep;122(5):952-61
pubmed: 22537108
Neurosci Lett. 2008 Aug 15;441(1):44-9
pubmed: 18597941
Pharmacol Ther. 2019 Jan;193:1-19
pubmed: 30081047
Neuroscience. 2003;122(4):885-95
pubmed: 14643758
Neurobiol Dis. 2019 Apr;124:81-92
pubmed: 30423474
Arterioscler Thromb Vasc Biol. 2011 May;31(5):986-1000
pubmed: 21508345
Toxicol Lett. 2017 Sep 5;279:107-114
pubmed: 28751209
Antioxid Redox Signal. 2006 Nov-Dec;8(11-12):2075-87
pubmed: 17034351
J Biol Chem. 2007 Apr 20;282(16):11613-7
pubmed: 17329241
Neurochem Res. 2017 Dec;42(12):3504-3514
pubmed: 29019035
Cell Mol Life Sci. 2014 Mar;71(6):999-1015
pubmed: 24100629
Neurochem Int. 2018 Oct;119:132-139
pubmed: 28687401
Biol Pharm Bull. 2012;35(12):2170-9
pubmed: 23207769
J Alzheimers Dis. 2004 Apr;6(2):147-57
pubmed: 15096698
J Pharmacol Sci. 2013;121(4):347-50
pubmed: 23514786
Cell Death Differ. 2017 Aug;24(8):1359-1368
pubmed: 28338655
Cell Mol Neurobiol. 2017 Apr;37(3):445-452
pubmed: 27140190
Biol Pharm Bull. 2015;38(12):1964-8
pubmed: 26632188
Neurochem Int. 2004 Oct;45(5):713-9
pubmed: 15234114
Oxid Med Cell Longev. 2016;2016:5698931
pubmed: 26881031
Oncotarget. 2017 Mar 21;8(12):20067-20085
pubmed: 28223543
Physiol Rev. 1999 Oct;79(4):1193-226
pubmed: 10508233
Exp Neurol. 2005 Jun;193(2):279-90
pubmed: 15869932
Biochim Biophys Acta. 2005 Apr 15;1743(3):291-304
pubmed: 15843042
Oxid Med Cell Longev. 2013;2013:408681
pubmed: 23533690
Dev Dyn. 1992 Jul;194(3):209-21
pubmed: 1467557
Front Immunol. 2017 Aug 21;8:1005
pubmed: 28871262
J Biol Chem. 2001 Apr 13;276(15):12076-83
pubmed: 11278531

Auteurs

Yasuhiro Kosuge (Y)

Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan.

Hiroshi Nango (H)

Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan.

Hiroki Kasai (H)

Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan.

Takuya Yanagi (T)

Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan.

Takayuki Mawatari (T)

Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan.

Kenta Nishiyama (K)

Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan.

Hiroko Miyagishi (H)

Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan.

Kumiko Ishige (K)

Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan.

Yoshihisa Ito (Y)

Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH