Exposure to UV radiance predicts repeated evolution of concealed black skin in birds.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
15 05 2020
15 05 2020
Historique:
received:
28
08
2019
accepted:
26
03
2020
entrez:
17
5
2020
pubmed:
18
5
2020
medline:
25
8
2020
Statut:
epublish
Résumé
Plumage is among the most well-studied components of integumentary colouration. However, plumage conceals most skin in birds, and as a result the presence, evolution and function of skin colour remains unexplored. Here we show, using a database of 2259 species encompassing >99% of bird genera, that melanin-rich, black skin is found in a small but sizeable percentage (~5%) of birds, and that it evolved over 100 times. The spatial distribution of black skin follows Gloger's rule, which states that pigmentation of endothermic animals increases towards the equator. Furthermore, most black-skinned birds inhabit high irradiation regions, and tend to be bald and/or have white feathers. Thus, taken together, our results suggest that melanin-rich, black skin helps to protect birds against ultraviolet irradiation. More generally, our results illustrate that feathered skin colour varies taxonomically, ontogenetically and temporally, providing an additional dimension for avian colour research.
Identifiants
pubmed: 32415098
doi: 10.1038/s41467-020-15894-6
pii: 10.1038/s41467-020-15894-6
pmc: PMC7229023
doi:
Substances chimiques
Melanins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
2414Références
Darwin, C. R. The Descent of Man, and Selection in Relation to Sex. (John Murray, 1871).
Newton, I. Opticks. (William Innys at the West-End of St. Paul’s, London, 1730).
Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).
pubmed: 26536112
doi: 10.1038/nature15509
pmcid: 26536112
McCoy, D. E., Feo, T., Harvey, T. A. & Prum, R. O. Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 9, 1 (2018).
pubmed: 29317637
pmcid: 5760687
doi: 10.1038/s41467-017-02088-w
Auber, L. The distribution of structural colours and unusual pigments in the class Aves. Ibis 99, 463–476 (1957).
doi: 10.1111/j.1474-919X.1957.tb01960.x
Prum, R. O. & Torres, R. Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. J. Exp. Biol. 206, 2409–2429 (2003).
pubmed: 12796458
doi: 10.1242/jeb.00431
pmcid: 12796458
Bortolotti, G. R. in Bird Colouration. Vol. 2 (eds Hill, G. E. & McGraw, K. E.) 3–35 (Harvard University Press, Cambridge, 2006).
Langmore, N. E., Hunt, S. & Kilner, R. M. Escalation of a coevolutionary arms race through host rejection of brood parasitic young. Nature 422, 157–160 (2003).
pubmed: 12634784
doi: 10.1038/nature01460
pmcid: 12634784
Jourdie, V., Moureau, B., Bennett, A. T. D. & Heeb, P. Ultraviolet reflectance by the skin of nestlings. Nature 431, 262 (2004).
pubmed: 15372020
doi: 10.1038/431262a
pmcid: 15372020
Iverson, E. N. K. & Karubian, J. The role of bare parts in avian signaling. Auk 134, 587–611 (2017).
Dorshorst, B. et al. A complex genomic rearrangement involving the Endothelin 3 locus causes dermal hyperpigmentation in the chicken. PLoS Genet. 7, e1002412 (2011).
pubmed: 22216010
pmcid: 3245302
doi: 10.1371/journal.pgen.1002412
Ohmart, R. D. & Lasiewksi, R. C. Roadrunners: energy conservation by hypothermia and absorption of sunlight. Science 172, 67–69 (1971).
pubmed: 5546286
doi: 10.1126/science.172.3978.67
Downs, C. T., Wirminghaus, J. O. & Lawes, M. J. Anatomical and nutritional adaptations of the Speckled Mousebird (Colius striatus). Auk 117, 791–794 (2000).
doi: 10.1093/auk/117.3.791
D’Alba, L. & Shawkey, M. D. Melanosomes: biogenesis, properties, and evolution of an ancient organelle. Physiol. Rev. 99, 1–19 (2018).
doi: 10.1152/physrev.00059.2017
Walsberg, G. E. Consequences of skin colour and fur properties for solar heat gain and ultraviolet irradiance in two mammals. J. Comp. Phys. B 158, 213–221 (1988).
doi: 10.1007/BF01075835
Jablonski, N. G. & Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. PNAS 107, 8692–8968 (2010).
doi: 10.1073/pnas.0914628107
Mackintosh, J. A. The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin. J. Theor. Biol. 212, 101–113 (2001).
doi: 10.1006/jtbi.2001.2331
Franco-Belussi, L., Sköld, H. N. & de Oliveira, C. Internal pigment cells respond to external UV radiation in frogs. J. Exp. Biol. 219, 1378–1383 (2016).
pubmed: 26944494
doi: 10.1242/jeb.134973
Reguera, S., Zamora-Camacho, F. J. & Moreno-Rueda G. The lizard Psammodromus algirus (Squamata: Lacertidae) is darker at high altitudes. Biol. J. Linn. Soc. 112, 132–141 (2014).
doi: 10.1111/bij.12250
Galván, I. & Solano, F. Bird integumentary melanins: biosynthesis, forms, function and evolution. Int. J. Mol. Sci. 17, 520 (2016).
pubmed: 27070583
pmcid: 4848976
doi: 10.3390/ijms17040520
Jablonski, N. G. The evolution of human skin and skin colour. Annu. Rev. Anthropol. 33, 585–623 (2004).
doi: 10.1146/annurev.anthro.33.070203.143955
Hill, H. Z. The function of melanin or six blind people examine an elephant. Bioessays 14, 49–56 (1992).
pubmed: 1546980
doi: 10.1002/bies.950140111
pmcid: 1546980
Ward, J. M., Blount, J., Ruxton, G. & Houston, D. C. The adaptive significance of dark plumage for birds in desert environments. Ardea 90, 311–323 (2002).
Galvan, I. & Solano, F. Bird integumentary melanins: biosynthesis, forms, function and evolution. Int. J. Mol. Sci. 17, 520 (2016).
pubmed: 27070583
pmcid: 4848976
doi: 10.3390/ijms17040520
Burtt, E. H. J. in The Behavioural Significance of Colour. (ed. Burtt, E. H. Jr.) (Garland STPM Press, 2018).
Wolf, B. O. & Walsberg, G. E. The role of plumage in heat transfer processes of birds. Am. Zool. 40, 575–584 (2000).
Geen, M. R. & Johnston, G. R. Colouration affects heating and cooling in three colour morphs of the Australian bluetongue lizard, Tiliqua scincoides. J. Therm. Biol. 43, 54–60 (2014).
pubmed: 24956958
doi: 10.1016/j.jtherbio.2014.04.004
pmcid: 24956958
Medina, I. et al. Reflection of near-infrared light convers thermal protection in birds. Nat. Commun. 9, 3610 (2018).
pubmed: 30190466
pmcid: 6127310
doi: 10.1038/s41467-018-05898-8
Burtt, E. H. J. & Ichida, J. M. Gloger’s rule, feather-degrading bacteria, and colour variation among song sparrows. Condor 106, 681–686 (2004).
doi: 10.1093/condor/106.3.681
Goldstein, G. et al. Bacterial degradation of black and white feathers. Auk 121, 656–659 (2004).
doi: 10.1642/0004-8038(2004)121[0656:BDOBAW]2.0.CO;2
Jacquin, L., Lenouvel, P., Haussy, C., Ducatez, S. & Gasparini, J. Melanin-based colouration is related to parasite intensity and cellular immune response in an urban free living bird: the feral pigeon. J. Avian Biol. 42, 11–15 (2011).
doi: 10.1111/j.1600-048X.2010.05120.x
Côte, J. et al. Melanin-based colouration and host-parasite interactions under global change. Proc. Biol. Sci. 285, 20180285 (2018).
pubmed: 29848644
pmcid: 5998088
doi: 10.1098/rspb.2018.0285
Theron, E. et al. The molecular basis of an avian plumage polymorphism in the wild: a melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the bananaquit, Coereba flaveola. Curr. Biol. 11, 550–557 (2001).
San-Jose, L. M. et al. Effects of the MC1R gene on sexual dimorphism in melanin-based colourations. Mol. Ecol. 24, 2794–2808 (2015).
pubmed: 25857339
doi: 10.1111/mec.13193
Gloger, C. W. L. Abänderungsweise der einzelnen, einger Veränderung durch das Klima unterworfenen Farben. In Das Abändern der Vögel durch Einfluss des Klimas. 11–24 (1833).
Delhey, K. A review of Gloger’s rule an ecogeographical rule of colour: definitions, interpretations and evidence. Biol. Rev. 94, 1294–1316 (2019).
Hamada, Y., Suryobroto, B., Groto, S. & Malaivijitnond, S. Morphological and body colour variation in Thai Macaca fascicularis north and south of the Isthmus of Kra. Int. J. Primatol. 29, 1271–1294 (2008).
doi: 10.1007/s10764-008-9289-y
Santana, S. E., Alfaro, J. L. & Alfaro, M. E. Adapative evolution of facial colour patterns in Neotropical primates. Proc. R. Soc. B Biol. Sci. 279, 2204–2211 (2012).
doi: 10.1098/rspb.2011.2326
Lucas, A. M., Stettenheim, P. R. Avian Anatomy: Integument, Part 1. (Department of Agriculture, Washington, D.C., 1972).
Chaplin, G. Geographic distribution of environmental factors influencing human skin coloration. Am. J. Phys. Anthropol. 125, 292–302 (2004).
pubmed: 15386260
doi: 10.1002/ajpa.10263
pmcid: 15386260
Hill, G. E. & McGraw, K. E. ed. Bird Colouration, Volume 1. 3–35 (Harvard University Press, Cambridge, 2006).
Clements, J. F. et al. The eBird/Clements Checklist of Birds of the World: v2018. (2018).
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
pubmed: 23123857
doi: 10.1038/nature11631
pmcid: 23123857
Hackett, S. J. et al. Phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).
pubmed: 18583609
doi: 10.1126/science.1157704
pmcid: 18583609
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).
doi: 10.1093/bioinformatics/bty633
Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
doi: 10.1111/j.2041-210X.2011.00169.x
Revell, L. J. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4, 754–759 (2013).
doi: 10.1111/2041-210X.12066
Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24, 1042–1051 (2010).
pubmed: 20184650
doi: 10.1111/j.1523-1739.2010.01455.x
pmcid: 20184650
Orme, D. et al. Caper: comparative analyses of phylogenetics and evolution in R. Methods Ecol. Evol. 3, 145–151 (2013).
doi: 10.1002/ece3.439
Ho, L. S. T. & Ane, C. A linear-time algorithm for Gaussian an non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).
pubmed: 24500037
doi: 10.1093/sysbio/syu005
pmcid: 24500037
Ives, A. R. R2s for correlated data: phylogenetic models, LMMs, and GLMMs. Syst. Biol. 68, 234–251 (2019).
pubmed: 30239975
doi: 10.1093/sysbio/syy060
pmcid: 30239975
Del Hoyo, J., Elliot, A., Sargatal, J., Christie, D. A. & de Juana, E. eds Handbook of the Birds of the World Alive. (Lynx Edicions, 2016).
Sayol, F., Downing, P. A., Iwaniuk, A., Maspons, J. & Sol, D. Predictable evolution towards larger brains in birds colonizing oceanic islands. Nat. Commun. 9, 2820 (2018).
pubmed: 30065283
pmcid: 6068123
doi: 10.1038/s41467-018-05280-8
Beckmann, M. et al. gIUV: a global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 5, 372–383 (2014).
doi: 10.1111/2041-210X.12168
The IUCN Red List of Threatened Species. Version 2018-2. http://www.iucnredlist.org (2019).
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
doi: 10.1016/j.ecolmodel.2005.03.026
GBIF: The Global Biodiversity Information Facility. Gbif.org. https://www.gbif.org (2019).
Fick, S. E. & Hijmans, R. J. Worldclim2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
doi: 10.1002/joc.5086
Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).
pubmed: 24876501
doi: 10.1126/science.1246752
Phillips, S. J. A brief tutorial on Maxent. AT&T Res. 190, 231–259 (2006).
Original S code by Richard A. Becker, Allan R. Wilks. R version by Ray Brownrigg. Enhancements by Thomas P Minka and Alex Deckmyn. maps: Draw Geographical Maps. R package version 3.3.0 (2018).