Effect of tetracaine on dynamic reorganization of lipid membranes.
Lipid bilayer
Lipid tubule
Membrane curvature
Membrane solubilization
Tetracaine
Journal
Biochimica et biophysica acta. Biomembranes
ISSN: 1879-2642
Titre abrégé: Biochim Biophys Acta Biomembr
Pays: Netherlands
ID NLM: 101731713
Informations de publication
Date de publication:
01 09 2020
01 09 2020
Historique:
received:
14
11
2019
revised:
18
04
2020
accepted:
07
05
2020
pubmed:
18
5
2020
medline:
15
12
2020
entrez:
17
5
2020
Statut:
ppublish
Résumé
To understand the intrinsic influence of a drug on lipid membranes is of critical importance in pharmacological science. Herein, we report fluorescence microscopy analysis of the interaction between the local anesthetic tetracaine (TTC) and planar supported lipid bilayers (SLBs), as model membranes. Our results show that TTC increases lipid chain mobility, destabilizes the SLBs and remarkably induces membrane disruption and solubilization. Upon TTC binding, a local curvature change in the bilayer was observed, which led to the subsequent formation of up to 20-μm-long flexible lipid tubules as well as the formation of micron-size holes. Quantitative analysis revealed that membrane solubilization process can be divided into two distinct different stages as a function of TTC concentration. In the first stage (<800 μM), the bilayer disruption profiles fit well to a Langmuir isotherm, while in the second stage (800 μM-25 mM), TTC solubilizes the membrane in a detergent-like manner. Notably, the onset of membrane solubilization occurred below the critical micelle concentration (cmc) of TTC, indicating a local accumulation of the drug in the membrane. Additionally, cholesterol increases the insertion of TTC into the membrane and thus promotes the solubilization effect of TTC on lipid bilayers. These findings may help to elucidate the possible mechanisms of TTC interaction with lipid membranes, the dose dependent toxicity attributed to local anesthetics, as well as provide valuable information for drug development and modification.
Identifiants
pubmed: 32416192
pii: S0005-2736(20)30191-7
doi: 10.1016/j.bbamem.2020.183351
pii:
doi:
Substances chimiques
Lipid Bilayers
0
Membrane Lipids
0
Phosphatidylcholines
0
Tetracaine
0619F35CGV
Cholesterol
97C5T2UQ7J
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
183351Informations de copyright
Copyright © 2020 Elsevier B.V. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.