Chemical Composition and Anti-Alzheimer's Disease-Related Activities of a Functional Oil from the Edible Seaweed Hizikia fusiforme.
Hizikia fusiforme
acetylcholinesterase
anti-neuroinflammation
antioxidants
lipids
Journal
Chemistry & biodiversity
ISSN: 1612-1880
Titre abrégé: Chem Biodivers
Pays: Switzerland
ID NLM: 101197449
Informations de publication
Date de publication:
Aug 2020
Aug 2020
Historique:
received:
26
01
2020
accepted:
15
05
2020
pubmed:
19
5
2020
medline:
28
5
2021
entrez:
19
5
2020
Statut:
ppublish
Résumé
Cholinergic disorder, oxidative stress, and neuroinflammation play important roles in the pathology of Alzheimer's disease. To explore the healthy potential of the edible seaweed Hizikia fusiforme on this aspect, a functional oil (HFFO) was extracted from this alga and investigated on its constituents by gas chromatography-mass spectrometry (GC/MS) in this study. Its anti-Alzheimer's related bioactivities including acetylcholinesterase (AChE) inhibition, antioxidation, and anti-neuroinflammation were evaluated, traced, and simulated by in vitro and in silico methods. GC/MS analysis indicated that HFFO mainly contained arachidonic acid (ARA), 11,14,17-eicosatrienoic acid (ETrA), palmitic acid, phytol, etc. HFFO showed moderate AChE inhibition and antioxidant activity. Bioactivity tracing using commercial standards verified that AChE inhibition of HFFO mainly originated from ARA and ETrA, whereas antioxidant activity mainly from ARA. Lineweaver-Burk plots showed that both ARA and ETrA are noncompetitive AChE inhibitors. A molecular docking study demonstrated low CDOCKER interaction energy of -26.33 kcal/mol for ARA and -43.70 kcal/mol for ETrA when interacting with AChE and multiple interactions in the ARA (or ETrA)-AChE complex. In the anti-neuroinflammatory evaluation, HFFO showed no toxicity toward BV-2 cells at 20 μg/mL and effectively inhibited the production of nitroxide and reduced the level of reactive oxygen species in lipopolysaccharide-induced BV-2 cells. The results indicated that HFFO could be used in functional foods for its anti-Alzheimer's disease-related activities.
Identifiants
pubmed: 32419273
doi: 10.1002/cbdv.202000055
doi:
Substances chimiques
Cholinesterase Inhibitors
0
Plant Oils
0
Reactive Oxygen Species
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2000055Subventions
Organisme : Shenzhen Dapeng New District Industrial Development Fund
ID : KY20180203
Organisme : Shenzhen Dapeng New District Industrial Development Fund
ID : PT201901-05
Organisme : Shenzhen Dapeng New District Scientific and Technological Research Development Fund
ID : KJYF202001-07
Organisme : Basic Research Project of Shenzhen Science and Technology Innovation Commission
ID : JCYJ20190813105005619
Organisme : Yangfan Talent Project of Guangdong Province
ID : 201433009
Organisme : Natural Science Foundation of Guangdong Province
Organisme : National Natural Science Foundation of China
ID : 21807015
Organisme : Applied S & T Research and Development Major Project of Guangdong Province
ID : 2016B020235001
Organisme : Marine Economy Promotion Fund of Guangdong Province
ID : 2019015
Organisme : Scientific Fund of Zhanjiang Municipal Oceanic and Fishery Bureau
ID : A18018
Organisme : Project of Enhancing School with Innovation of Guangdong Ocean University
ID : 230420022
Informations de copyright
© 2020 Wiley-VHCA AG, Zurich, Switzerland.
Références
Y. Niu, B. Wang, M. Zhou, J. Xue, H. Shapour, R. Cao, X. Cui, J. Wu, J. Xiang, ‘Dynamic complexity of spontaneous BOLD activity in Alzheimer's disease and mild cognitive impairment using multiscale entropy analysis’, Front. Neurosci. 2018, 12, 677-689.
V. J. De-Paula, M. Radanovic, B. S. Diniz, O. V. Forlenza, ‘Alzheimer's disease’, Subcell. Biochem. 2012, 65, 329-352.
R. Anand, K. D. Gill, A. A. Mahdi, ‘Therapeutics of Alzheimer's disease: past, present and future’, Neuropharmacology 2014, 76, 27-50.
S.-H. Han, ‘Novel pharmacotherapies for Alzheimer's disease’, J. Korean Med. Assoc. 2009, 52, 1059-1068.
S. Agatonovic-Kustrin, C. Kettle, D. W. Morton, ‘A molecular approach in drug development for Alzheimer's disease’, Biomed. Pharmacother. 2018, 106, 553-565.
G. T. Ha, R. K. Wong, Y. Zhang, ‘Huperzine A as potential treatment of Alzheimer's disease: an assessment on chemistry, pharmacology, and clinical studies’, Chem. Biodiversity 2011, 8, 1189-1204.
C. Cheignon, M. Tomas, D. Bonnefont-Rousselot, P. Faller, C. Hureau, F. Collin, ‘Oxidative stress and the amyloid beta peptide in Alzheimer's disease’, Redox. Biol. 2018, 14, 450-464.
D. Bhardwaj, C. Mitra, C. A. Narasimhulu, A. Riad, M. Doomra, S. Parthasarathy, ‘Alzheimer's disease-current status and future directions’, J. Med. Food 2017, 20, 1141-1151.
L. Piemontese, G. Vitucci, M. Catto, A. Laghezza, F. M. Perna, M. Rullo, F. Loiodice, V. Capriati, M. Solfrizzo, ‘Natural scaffolds with multi-target activity for the potential treatment of Alzheimer's disease’, Molecules 2018, 23, 2182-2193.
R. Niranjan, ‘Recent advances in the mechanisms of neuroinflammation and their roles in neurodegeneration’, Neurochem. Int. 2018, 120, 13-20.
A. Swanson, T. Wolf, A. Sitzmann, A. A. Willette, ‘Neuroinflammation in Alzheimer's disease: pleiotropic roles for cytokines and neuronal pentraxins’, Behav. Brain Res. 2018, 347, 49-56.
D. V. Hansen, J. E. Hanson, M. Sheng, ‘Microglia in Alzheimer's disease’, J. Cell Biol. 2018, 217, 459-472.
N. Esteras, C. Alquézar, A d. l. Encarnación, Á. Martín-Requero, ‘Lymphocytes in Alzheimer's disease pathology: altered signaling pathways’, Curr. Alzheimer Res. 2016, 13, 439-449.
Z. Ma, M. Wu, L. Lin, R. W. Thring, H. Yu, X. Zhang, M. Zhao, ‘Allelopathic interactions between the macroalga Hizikia fusiformis (Harvey) and the harmful blooms-forming dinoflagellate Karenia mikimotoi’, Harmful Algae 2017, 65, 19-26.
K. K. A. Sanjeewa, Y.-J. Jeon, ‘Edible brown seaweeds: a review’, J. Food Bioact. 2018, 2, 37-50.
L. Wang, W. Lee, J. Y. Oh, Y. R. Cui, B. Ryu, Y.-J. Jeon, ‘Protective effect of sulfated polysaccharides from celluclast-assisted extract of Hizikia fusiforme against ultraviolet B-induced skin damage by regulating NF-kappa B, AP-1, and MAPKs signaling pathways In Vitro in human dermal fibroblasts’, Mar. Drugs 2018, 16, 239-250.
M. Wu, C. Tong, Y. Wu, S. Liu, W. Li, ‘A novel thyroglobulin-binding lectin from the brown alga Hizikia fusiformis and its antioxidant activities’, Food Chem. 2016, 201, 7-13.
T.-Y. Kim, C.-Y. Jin, G.-Y. Kim, I.-W. Choi, Y. K. Jeong, T.-J. Nam, S.-K. Kim, Y. H. Choi, ‘Ethyl alcohol extracts of Hizikia fusiforme sensitize AGS human gastric adenocarcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis’, J. Med. Food 2009, 12, 782-787.
A. Wagle, S. H. Seong, B. T. Zhao, M. H. Woo, H. A. Jung, J. S. Choi, ‘Comparative study of selective In Vitro and in silico BACE1 inhibitory potential of glycyrrhizin together with its metabolites, 18α- and 18β-glycyrrhetinic acid, isolated from Hizikia fusiformis’, Arch. Pharmacal Res. 2018, 41, 409-418.
P. Hu, Z. Li, M. Chen, Z. Sun, Y. Ling, J. Jiang, C. Huang, ‘Structural elucidation and protective role of a polysaccharide from Sargassum fusiforme on ameliorating learning and memory deficiencies in mice’, Carbohydr. Polym. 2016, 139, 150-158.
J. Bogie, C. Hoeks, M. Schepers, A. Tiane, A. Cuypers, F. Leijten, Y. Chintapakorn, T. Suttiyut, S. Pornpakakul, D. Struik, ‘Dietary Sargassum fusiforme improves memory and reduces amyloid plaque load in an Alzheimer's disease mouse model’, Sci. Rep. 2019, 9, 4908.
K. Yurko-Mauro, ‘Cognitive and cardiovascular benefits of docosahexaenoic acid in aging and cognitive decline’, Curr. Alzheimer Res. 2010, 7, 190-196.
M. Ahmed, N. Latif, R. A. Khan, A. Ahmad, G. Thomé, M. R. C. Schetinger, ‘Inhibitory effect of arachidonic acid on venom acetylcholinesterase’, Toxicol. Environ. Chem. 2011, 93, 1659-1665.
J.-P. Colletier, D. Fournier, H. M. Greenblatt, J. Stojan, J. L. Sussman, G. Zaccai, I. Silman, M. Weik, ‘Structural insights into substrate traffic and inhibition in acetylcholinesterase’, EMBO J. 2006, 25, 2746-2756.
J. L. Sussman, M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker, I. Silman, ‘Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein’, Science 1991, 253, 872-879.
C. Roca, C. Requena, V. Sebastián-Pérez, S. Malhotra, C. Radoux, C. Pérez, A. Martinez, J. Antonio Páez, T. L. Blundell, N. E. Campillo, ‘Identification of new allosteric sites and modulators of AChE through computational and experimental tools’, J. Enzyme Inhib. Med. Chem. 2018, 33, 1034-1047.
Z.-J. Wang, C.-L. Liang, G.-M. Li, C.-Y. Yu, M. Yin, ‘Neuroprotective effects of arachidonic acid against oxidative stress on rat hippocampal slices’, Chem.-Biol. Interact. 2006, 163, 207-217.
K. Pinchaud, K. Maguin-Gaté, J.-L. Olivier, ‘Dietary arachidonic acid: a Janus face actor in brain and Alzheimer's disease?’, OCL 2018, 25, D405.
B. M. McGahon, D. Martin, D. Horrobin, M. Lynch, ‘Age-related changes in synaptic function: analysis of the effect of dietary supplementation with omega-3 fatty acids’, Neuroscience 1999, 94, 305-314.
I. Kan, E. Melamed, D. Offen, P. Green, ‘Docosahexaenoic acid and arachidonic acid are fundamental supplements for the induction of neuronal differentiation’, J. Lipid Res. 2007, 48, 513-517.
S. Okuda, H. Saito, H. Katsuki, ‘Arachidonic acid: toxic and trophic effects on cultured hippocampal neurons’, Neuroscience 1994, 63, 691-699.
F. Darios, B. Davletov, ‘Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3’, Nature 2006, 440, 813-817.
A. E. Shatshat, A. T. Pham, P. P. N. Rao, ‘Interactions of polyunsaturated fatty acids with amyloid peptides Aβ40 and Aβ42’, Arch. Biochem. Biophys. 2019, 663, 34-43.
H. Tokuda, M. Kontani, H. Kawashima, Y. Kiso, H. Shibata, N. Osumi, ‘Differential effect of arachidonic acid and docosahexaenoic acid on age-related decreases in hippocampal neurogenesis’, Neurosci. Res. 2014, 88, 58-66.
Y. Okaichi, Y. Ishikura, K. Akimoto, H. Kawashima, Y. Toyoda-Ono, Y. Kiso, H. Okaichi, ‘Arachidonic acid improves aged rats’ spatial cognition’, Physiol. Behav. 2005, 84, 617-623.
T. Hosono, A. Mouri, K. Nishitsuji, C.-G. Jung, M. Kontani, H. Tokuda, H. Kawashima, H. Shibata, T. Suzuki, T. Nabehsima, M. Michikawab, ‘Arachidonic or docosahexaenoic acid diet prevents memory impairment in Tg2576 Mice’, J. Alzheimer's Dis. 2015, 48, 149-162.
T. Hosono, K. Nishitsuji, T. Nakamura, C.-G. Jung, M. Kontani, H. Tokuda, H. Kawashima, Y. Kiso, T. Suzuki, M. Michikawa, ‘Arachidonic acid diet attenuates brain Aβ deposition in Tg2576 mice’, Brain Res. 2015, 1613, 92-99.
S.-J. Chen, L.-T. Chuang, S.-N. Chen, ‘Incorporation of eicosatrienoic acid exerts mild anti-inflammatory properties in murine raw264.7 cells’, Inflammation 2015, 38, 534-545.
X.-J. Jin, E. J. Kim, I. K. Oh, Y. K. Kim, C.-H. Park, J. H. Chung, ‘Prevention of UV-induced skin damages by 11,14,17-eicosatrienoic acid in hairless mice in vivo’, J. Korean Med. Sci. 2010, 25, 930-937.
R. O. Silva, F. B. Sousa, S. R. Damasceno, N. S. Carvalho, V. G. Silva, F. R. Oliveira, D. P. Sousa, K. S. Aragao, A. L. Barbosa, R. M. Freitas, J. V. Medeiros, ‘Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress’, Fundam. Clin. Pharmacol. 2014, 28, 455-464.
G. L. Ellman, K. D. Courtney, V. Andres Jr., R. M. Featherstone, ‘A new and rapid colorimetric determination of acetylcholinesterase activity’, Biochem. Pharmacol. 1961, 7, 88-95.
W. C. Yang, H. Y. Bao, Y. Y. Liu, Y. Y. Nie, J. M. Yang, P. Z. Hong, Y. Zhang, ‘Depsidone derivatives and a cyclopeptide produced by marine fungus Aspergillus unguis under chemical induction and by its plasma induced mutant’, Molecules 2018, 23, 2245-2259.
O. P. Sharma, T. K. Bhat, ‘DPPH antioxidant assay revisited’, Food Chem. 2009, 113, 1202-1205.
Z.-J. Qian, K.-H. Kang, S.-K. Kim, ‘Isolation and antioxidant activity evaluation of two new phthalate derivatives from seahorse, Hippocampus kuda Bleeler’, Biotechnol. Bioprocess Eng. 2012, 17, 1031-1040.
Y. Y. Zhang, Y. Zhang, Y.-B. Yao, X.-L. Lei, Z.-J. Qian, ‘Butyrolactone-I from coral-derived fungus Aspergillus terreus attenuates neuro-inflammatory response via suppression of NF-κB pathway in BV-2 cells’, Mar. Drugs 2018, 16, 202-215.
B. Ryu, Z.-J. Qian, S.-K. Kim, ‘SHP-1, a novel peptide isolated from seahorse inhibits collagen release through the suppression of collagenases 1 and 3, nitric oxide products regulated by NF-κB/p38 kinase’, Peptides 2010, 31, 79-87.
H. Li, A. Yin, Z. Cheng, M. Feng, H. Zhang, J. Xu, F. Wang, L. Qian, ‘Attenuation of Na/K-ATPase/Src/ROS amplification signal pathway with pNaktide ameliorates myocardial ischemia-reperfusion injury’, Int. J. Biol. Macromol. 2018, 118, 1142-1148.