Flightless anchors IQGAP1 and R-ras to mediate cell extension formation and matrix remodeling.
3T3 Cells
Animals
Cell Adhesion
Cell Surface Extensions
/ metabolism
Collagen
/ pharmacology
Extracellular Matrix
/ metabolism
Mice
Microfilament Proteins
/ metabolism
Models, Biological
Protein Binding
/ drug effects
Protein Domains
Trans-Activators
/ metabolism
cdc42 GTP-Binding Protein
/ metabolism
ras GTPase-Activating Proteins
/ chemistry
ras Proteins
/ metabolism
Journal
Molecular biology of the cell
ISSN: 1939-4586
Titre abrégé: Mol Biol Cell
Pays: United States
ID NLM: 9201390
Informations de publication
Date de publication:
15 07 2020
15 07 2020
Historique:
pubmed:
21
5
2020
medline:
28
5
2021
entrez:
21
5
2020
Statut:
ppublish
Résumé
Tractional remodeling of collagen fibrils by fibroblasts requires long cell extensions that mediate fibril alignment. The formation of these cell extensions involves flightless I (FliI), an actin-binding protein that contains a leucine-rich-repeat (LRR), which binds R-ras and may regulate cdc42. We considered that FliI interacts with small GTPases and their regulators to mediate assembly of cell extensions. Mass spectrometry analyses of FliI immunoprecipitates showed abundant Ras GTPase-activating-like protein (IQGAP1), which in immunostained samples colocalized with FliI at cell adhesions. Knockdown of IQGAP1 reduced the numbers of cell extensions and the alignment of collagen fibrils. In experiments using dominant negative mutants, cdc42 activity was required for the formation of short extensions while R-ras was required for the formation of long extensions. Immunoprecipitation of wild-type and mutant constructs showed that IQGAP1 associated with cdc42 and R-ras; this association required the GAP-related domain (1004-1237 aa) of IQGAP1. In cells transfected with FliI mutants, the LRR of FliI, but not its gelsolin-like domains, mediated association with cdc42, R-ras, and IQGAP1. We conclude that FliI interacts with IQGAP1 and co-ordinates with cdc42 and R-ras to control the formation of cell extensions that enable collagen tractional remodeling.
Identifiants
pubmed: 32432944
doi: 10.1091/mbc.E19-10-0554
pmc: PMC7521798
doi:
Substances chimiques
FlII protein, mouse
0
IQ motif containing GTPase activating protein 1
0
Microfilament Proteins
0
Trans-Activators
0
ras GTPase-Activating Proteins
0
Collagen
9007-34-5
Rras protein, mouse
EC 3.6.1.-
cdc42 GTP-Binding Protein
EC 3.6.5.2
ras Proteins
EC 3.6.5.2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1595-1610Subventions
Organisme : CIHR
ID : MOP-36332
Pays : Canada
Références
Development. 2014 Feb;141(4):729-36
pubmed: 24496611
Mol Biol Cell. 2017 May 15;28(10):1311-1325
pubmed: 28331069
Small GTPases. 2013 Oct-Dec;4(4):199-207
pubmed: 24355937
Cell. 1995 Apr 7;81(1):53-62
pubmed: 7536630
J Biol Chem. 2002 Jul 5;277(27):24753-63
pubmed: 11948177
Biochim Biophys Acta. 2007 Aug;1773(8):1177-95
pubmed: 17428555
Mol Cell Biol. 2003 Feb;23(3):933-49
pubmed: 12529399
J Cell Sci. 2001 Apr;114(Pt 7):1357-66
pubmed: 11257001
J Cell Sci. 2001 Feb;114(Pt 3):549-62
pubmed: 11171324
J Biol Chem. 2005 Mar 25;280(12):11961-72
pubmed: 15655247
Mol Biol Cell. 2012 Dec;23(23):4647-61
pubmed: 23034183
Genomics. 1997 May 15;42(1):46-54
pubmed: 9177775
Mol Cell Biol. 2000 Jan;20(2):697-701
pubmed: 10611248
Mol Cell Biol. 2002 May;22(10):3518-26
pubmed: 11971982
J Biol Chem. 1998 Apr 3;273(14):7920-7
pubmed: 9525888
Histochem J. 1996 Apr;28(4):229-45
pubmed: 8762055
Biomaterials. 2014 Jan;35(4):1138-49
pubmed: 24215732
J Cell Sci. 2005 May 15;118(Pt 10):2085-92
pubmed: 15890984
EMBO Rep. 2003 Jun;4(6):571-4
pubmed: 12776176
Cell Motil Cytoskeleton. 2006 Feb;63(2):101-15
pubmed: 16395720
Mol Biol Cell. 2018 Oct 1;29(20):2481-2493
pubmed: 30091651
Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11386-90
pubmed: 8248259
Annu Rev Cell Dev Biol. 2018 Oct 6;34:59-84
pubmed: 30074816
Annu Rev Biochem. 1999;68:459-86
pubmed: 10872457
Nat Rev Mol Cell Biol. 2014 Dec;15(12):786-801
pubmed: 25415508
Cell. 1992 Aug 7;70(3):401-10
pubmed: 1643658
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11570-5
pubmed: 19556544
J Cell Biol. 1999 May 31;145(5):1077-88
pubmed: 10352023
J Biol Chem. 1997 Nov 21;272(47):29579-83
pubmed: 9368021
J Biol Chem. 2003 Feb 7;278(6):4347-52
pubmed: 12446675
Nat Rev Mol Cell Biol. 2009 Jan;10(1):21-33
pubmed: 19197329
Int J Cancer. 2010 Jun 1;126(11):2563-74
pubmed: 19856315
Science. 1998 Jan 23;279(5350):509-14
pubmed: 9438836
Trends Cell Biol. 2006 May;16(5):242-9
pubmed: 16595175
Nat Cell Biol. 2002 Mar;4(3):246-50
pubmed: 11854753
FASEB J. 2012 Aug;26(8):3260-72
pubmed: 22581781
Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2122-8
pubmed: 10051605
Mol Biol Cell. 2005 Jan;16(1):84-96
pubmed: 15525681
Mol Biol Cell. 2015 Jun 15;26(12):2279-97
pubmed: 25877872
Curr Opin Struct Biol. 2001 Dec;11(6):725-32
pubmed: 11751054
Int J Biochem Cell Biol. 2008;40(8):1415-9
pubmed: 17526423
Anal Biochem. 1993 Apr;210(1):179-87
pubmed: 8489015
J Ultrastruct Res. 1981 Oct;77(1):1-36
pubmed: 7299906
J R Soc Interface. 2015 Jan 6;12(102):20141074
pubmed: 25392399
J Cell Sci. 2000 Oct;113 Pt 19:3439-51
pubmed: 10984435
Sci Rep. 2019 Jul 30;9(1):11057
pubmed: 31363101
J Microsc. 2006 Dec;224(Pt 3):213-32
pubmed: 17210054
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10465-9
pubmed: 17563371
Cell Motil Cytoskeleton. 2003 Jul;55(3):147-55
pubmed: 12789660
J Biol Chem. 2003 Oct 17;278(42):41237-45
pubmed: 12900413
Curr Opin Cell Biol. 2015 Oct;36:23-31
pubmed: 26186729
J Pathol. 2007 Feb;211(3):351-61
pubmed: 17152050
Curr Opin Cell Biol. 1999 Feb;11(1):103-8
pubmed: 10047530
Biochem Soc Trans. 2005 Nov;33(Pt 5):891-5
pubmed: 16246005
BMC Cell Biol. 2010 Feb 18;11:14
pubmed: 20167113