Flexible top-down modulation in human ventral temporal cortex.
Attention
Bottom-up processing
Fusiform face area
Human ventral temporal cortex
Top-down processing
Journal
NeuroImage
ISSN: 1095-9572
Titre abrégé: Neuroimage
Pays: United States
ID NLM: 9215515
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
18
03
2019
revised:
13
05
2020
accepted:
14
05
2020
pubmed:
23
5
2020
medline:
20
2
2021
entrez:
23
5
2020
Statut:
ppublish
Résumé
Visual neuroscientists have long characterized attention as inducing a scaling or additive effect on fixed parametric functions describing neural responses (e.g., contrast response functions). Here, we instead propose that top-down effects are more complex and manifest in ways that depend not only on attention but also other cognitive processes involved in executing a task. To substantiate this theory, we analyze fMRI responses in human ventral temporal cortex (VTC) in a study where stimulus eccentricity and cognitive task are varied. We find that as stimuli are presented farther into the periphery, bottom-up stimulus-driven responses decline but top-down attentional enhancement increases substantially. This disproportionate enhancement of weak responses cannot be easily explained by conventional models of attention. Furthermore, we find that attentional effects depend on the specific cognitive task performed by the subject, indicating the influence of additional cognitive processes other than attention (e.g., decision-making). The effects we observe replicate in an independent experiment from the same study, and also generalize to a separate study involving different stimulus manipulations (contrast and phase coherence). Our results suggest that a quantitative understanding of top-down modulation requires more nuanced characterization of the multiple cognitive factors involved in completing a perceptual task.
Identifiants
pubmed: 32439537
pii: S1053-8119(20)30450-X
doi: 10.1016/j.neuroimage.2020.116964
pmc: PMC7754186
mid: NIHMS1650980
pii:
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
116964Subventions
Organisme : NINDS NIH HHS
ID : P30 NS076408
Pays : United States
Organisme : NIBIB NIH HHS
ID : P41 EB015894
Pays : United States
Organisme : NIBIB NIH HHS
ID : P41 EB027061
Pays : United States
Informations de copyright
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Références
J Neurosci. 2017 Mar 22;37(12):3386-3401
pubmed: 28242794
Nat Neurosci. 2013 Jun;16(6):763-70
pubmed: 23603707
Curr Biol. 2004 May 4;14(9):744-51
pubmed: 15120065
J Neurosci. 1999 Jan 1;19(1):431-41
pubmed: 9870971
J Neurophysiol. 1997 Jan;77(1):24-42
pubmed: 9120566
Curr Biol. 2015 Mar 2;25(5):595-600
pubmed: 25702580
Neuron. 2015 Jun 3;86(5):1182-8
pubmed: 26050038
Annu Rev Vis Sci. 2017 Sep 15;3:167-196
pubmed: 28715955
Exp Brain Res. 1989;77(1):23-30
pubmed: 2792266
J Vis. 2008 Aug 01;8(10):2.1-11
pubmed: 19146344
Annu Rev Vis Sci. 2019 Sep 15;5:373-397
pubmed: 31226012
Elife. 2017 Feb 22;6:
pubmed: 28226243
Neuron. 2000 Jun;26(3):703-14
pubmed: 10896165
Vision Res. 2009 Jun;49(10):1129-43
pubmed: 19038281
Annu Rev Neurosci. 2004;27:611-47
pubmed: 15217345
Vision Res. 2006 Apr;46(8-9):1210-20
pubmed: 16005931
J Neurophysiol. 1982 Jul;48(1):217-37
pubmed: 7119846
Vision Res. 2004 Jun;44(12):1297-320
pubmed: 15066392
Curr Biol. 2014 Jan 20;24(2):R66-R67
pubmed: 24456976
Nat Neurosci. 2010 Dec;13(12):1554-9
pubmed: 21057509
PLoS Comput Biol. 2016 Feb 18;12(2):e1004770
pubmed: 26890584
J Neurophysiol. 2001 Oct;86(4):1916-36
pubmed: 11600651
J Vis. 2014 Dec 30;14(14):16
pubmed: 25549920
Psychol Rev. 2009 Apr;116(2):283-317
pubmed: 19348543
Cereb Cortex. 2015 Oct;25(10):3911-31
pubmed: 25452571
Nat Neurosci. 2011 Oct 23;14(12):1513-5
pubmed: 22019729
J Neurosci. 2015 Jan 14;35(2):508-17
pubmed: 25589746
Neuron. 2002 Apr 25;34(3):479-90
pubmed: 11988177
Neuron. 2004 May 27;42(4):677-86
pubmed: 15157427
J Neurosci. 2002 Nov 1;22(21):9475-89
pubmed: 12417672
Neuropsychologia. 2019 May;128:297-304
pubmed: 28807647
Trends Cogn Sci. 2016 Jun;20(6):401-404
pubmed: 27079632
Vision Res. 2005 Apr;45(9):1201-12
pubmed: 15707928
Vision Res. 2013 Jun 7;85:104-12
pubmed: 23562388
J Neurosci. 2017 Sep 6;37(36):8767-8782
pubmed: 28821655
Brain Res. 1979 Dec 14;178(2-3):363-80
pubmed: 116712
Nat Neurosci. 2006 Sep;9(9):1156-60
pubmed: 16906153
Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):6202-7
pubmed: 18413602
Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3314-9
pubmed: 10077681
Trends Cogn Sci. 2012 Feb;16(2):129-35
pubmed: 22209601
Cereb Cortex. 2017 Aug 1;27(8):4277-4291
pubmed: 28591837
Nat Neurosci. 2000 Sep;3(9):940-5
pubmed: 10966626
Cogn Psychol. 1980 Jan;12(1):97-136
pubmed: 7351125
J Neurosci. 2012 May 30;32(22):7723-33
pubmed: 22649250
J Neurosci. 2009 Sep 23;29(38):11933-42
pubmed: 19776279
Nat Neurosci. 2004 Jan;7(1):70-4
pubmed: 14647291
J Neurosci. 2007 Jan 3;27(1):93-7
pubmed: 17202476
Annu Rev Neurosci. 2000;23:315-41
pubmed: 10845067
Neuron. 2009 Jan 29;61(2):168-85
pubmed: 19186161
Neuron. 2014 Oct 1;84(1):227-237
pubmed: 25242220
PLoS Comput Biol. 2016 Dec 15;12(12):e1005225
pubmed: 27977679
PLoS One. 2009;4(2):e4651
pubmed: 19247494
Vision Res. 2009 Jun;49(10):1182-7
pubmed: 18619996
Front Neurosci. 2013 Dec 17;7:247
pubmed: 24381539
J Cogn Neurosci. 2011 Jan;23(1):238-46
pubmed: 19702461
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3593-8
pubmed: 22331901
J Neurosci. 2003 Jan 1;23(1):339-48
pubmed: 12514233
Vision Res. 2011 Jul 1;51(13):1484-525
pubmed: 21549742
Front Neurosci. 2011 Feb 08;5:13
pubmed: 21369356