Protein changes in synaptosomes of Huntington's disease knock-in mice are dependent on age and brain region.
Cortex
David pathway analysis
Huntingtin
PDE10
Proteomics
SCN4B
Striatum
Synaptosomes
TMT mass spectrometry
Western blot
Journal
Neurobiology of disease
ISSN: 1095-953X
Titre abrégé: Neurobiol Dis
Pays: United States
ID NLM: 9500169
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
20
11
2019
revised:
19
03
2020
accepted:
16
05
2020
pubmed:
23
5
2020
medline:
15
7
2021
entrez:
23
5
2020
Statut:
ppublish
Résumé
Molecular changes at synapses are thought to underly the deficits in motor and cognitive dysfunction seen in Huntington's disease (HD). Previously we showed in synaptosome preparations age dependent changes in levels of selected proteins examined by western blot assay in the striatum of Q140/Q140 HD mice. To assess if CAG repeat length influenced protein changes at the synapse, we examined synaptosomes from 6-month old heterozygote HD mice with CAG repeat lengths ranging from 50 to 175. Analysis of 19 selected proteins showed that increasing CAG repeat length in huntingtin (HTT) increased the number of affected proteins in HD striatal synaptosomes. Moreover, SDS-soluble total HTT (WT plus mutant HTT) and pThr3 HTT were reduced with increasing CAG repeat length, and there was no pSer421 mutant HTT detected in any HD mice. A LC-MS/MS and bioinfomatics study of synaptosomes from 2 and 6-month old striatum and cortex of Q140/Q7 HD mice showed enrichment of synaptic proteins and an influence of age, gender and brain region on the number of protein changes. HD striatum at 6 months had the most protein changes that included many HTT protein interactors, followed by 2-month old HD striatum, 2-month old HD cortex and 6-month HD cortex. SDS-insoluble mutant HTT was detected in HD striatal synaptosomes consistent with the presence of aggregates. Proteins changed in cortex differed from those in striatum. Pathways affected in HD striatal synaptosomes that were not identified in whole striatal lysates of the same HD mouse model included axon guidance, focal adhesion, neurotrophin signaling, regulation of actin cytoskeleton, endocytosis, and synaptic vesicle cycle. Results suggest that synaptosomes prepared from HD mice are highly informative for monitoring protein changes at the synapse and may be preferred for assessing the effects of experimental therapies on synaptic function in HD.
Identifiants
pubmed: 32439598
pii: S0969-9961(20)30225-4
doi: 10.1016/j.nbd.2020.104950
pii:
doi:
Substances chimiques
HTT protein, human
0
Huntingtin Protein
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
104950Informations de copyright
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Competing Interest KBK-G spouse owns less than 0.1% stock in the following companies: Bristol-Myers Squibb Company, Cisco Systems, Inc., GE Healthcare Life Sciences, Generex Biotechnology Corporation, GlaxoSmithKline, Metabolix Bioplastics, Nanogen, Inc., Nanometrics, Inc., StemCells, Inc. Other authors have no declarations of interest.