Urban aliens and threatened near-naturals: Land-cover affects the species richness of alien- and threatened species in an urban-rural setting.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
22 05 2020
22 05 2020
Historique:
received:
13
01
2020
accepted:
02
05
2020
entrez:
24
5
2020
pubmed:
24
5
2020
medline:
2
12
2020
Statut:
epublish
Résumé
Urbanisation has strong effects on biodiversity patterns, but impacts vary among species groups and across spatial scales. From a local biodiversity management perspective, a more general understanding of species richness across taxonomic groups is required. This study aims to investigate how fine-scale land-cover variables influence species richness patterns of locally threatened and alien species. The study was performed in Trondheim, Norway, covering a steep urbanisation gradient. Spatially correlated Generalised Linear Mixed Effects Models predicting the number of all-, threatened-and alien species by taxon, habitat, habitat heterogeneity and mean aspect within 500 m×500 m grid cells were constructed. The habitat categories were based on detailed land-cover maps. The highest number of threatened species was found in habitats relatively less affected by humans, whereas the number of alien species were only dependent on taxonomic group and spatial correlation. It is shown that land-cover variables within an administrative border can be used to make predictions on species richness within overarching species groups. Recommendations to biodiversity management agencies are to ensure protection of natural habitats to favour locally threatened species, and closely monitor urban areas to mitigate the introduction and spread of alien species.
Identifiants
pubmed: 32444662
doi: 10.1038/s41598-020-65459-2
pii: 10.1038/s41598-020-65459-2
pmc: PMC7244569
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8513Références
Grimm, N. B. et al. Global change and the ecology of cities. Science (80-.). 319, 756–760 (2008).
doi: 10.1126/science.1150195
United Nations. World Urbanization Prospects: The 2018 Revision. World Urbinazation Prospect. 2018 Revis. 1–2 (2018).
Cincotta, R. P., Wisnewski, J. & Engelman, R. Human population and biodiversity hotspots. Nature 404, 990–992 (2000).
pubmed: 10801126
doi: 10.1038/35010105
Araújo, M. B. The coincidence of people and biodiversity in. Europe. Glob. Ecol. Biogeogr. 12, 5–12 (2003).
doi: 10.1046/j.1466-822X.2003.00314.x
Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 159, 1974–1983 (2011).
pubmed: 21435761
doi: 10.1016/j.envpol.2011.02.022
Ancillotto, L., Bosso, L., Salinas-Ramos, V. B. & Russo, D. The importance of ponds for the conservation of bats in urban landscapes. Landsc. Urban Plan. 190, 103607 (2019).
doi: 10.1016/j.landurbplan.2019.103607
McKinney, M. L. Urbanization, biodiversity, and conservation. Bioscience 52 (2002).
Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. London B Biol. Sci. 281 (2014).
Alberti, M. The effects of urban patterns on ecosystem function. Int. Reg. Sci. Rev. 28, 168–192 (2005).
doi: 10.1177/0160017605275160
McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).
doi: 10.1016/j.biocon.2005.09.005
Gaston, K. J. Biodiversity and extinction: species and people. Prog. Phys. Geogr. 2, 239–247 (2005).
doi: 10.1191/0309133305pp445pr
Padayachee, A. L. et al. How do invasive species travel to and through urban environments? Biol. Invasions 19, 3557–3570 (2017).
doi: 10.1007/s10530-017-1596-9
Blair, R. B. Land use and avian species diversity along an urban gradient. Ecol. Appl. 6, 506–519 (1996).
doi: 10.2307/2269387
Kühn, I. & Klotz, S. Urbanization and homogenization - Comparing the floras of urban and rural areas in Germany. Biol. Conserv. 127, 292–300 (2006).
doi: 10.1016/j.biocon.2005.06.033
Francis, R. A. & Chadwick, M. A. Urban invasions: non-native and invasive species in cities. Geography 100, 144–152 (2015).
Kühn, I., Brandl, R. & Klotz, S. The flora of German cities is naturally species rich. Evol. Ecol. Res. 6, 749–764 (2004).
Cadotte, M. W., Yasui, S. L. E., Livingstone, S. & MacIvor, J. S. Are urban systems beneficial, detrimental, or indifferent for biological invasion? Biol. Invasions 19, 3489–3503 (2017).
doi: 10.1007/s10530-017-1586-y
Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).
doi: 10.1111/geb.12404
Pautasso, M. Scale dependence of the correlation between human population presence and vertebrate and plant species richness. Ecol. Lett. 10, 16–24 (2007).
pubmed: 17204113
doi: 10.1111/j.1461-0248.2006.00993.x
Ahrné, K., Bengtsson, J. & Elmqvist, T. Bumble bees (Bombus spp) along a gradient of increasing urbanization. PLoS One 4, 1–9 (2009).
doi: 10.1371/journal.pone.0005574
Bertolino, S. et al. Spatially explicit models as tools for implementing effective management strategies for invasive alien mammals. Mamm. Rev. online ver, 1–13 (2020).
Turrini, T. & Knop, E. A landscape ecology approach identifies important drivers of urban biodiversity. Glob. Chang. Biol. 21, 1652–1667 (2015).
pubmed: 25620599
doi: 10.1111/gcb.12825
Concepción, E. D. et al. Impacts of urban sprawl on species richness of plants, butterflies, gastropods and birds: not only built-up area matters. Urban Ecosyst. 19, 225–242 (2016).
doi: 10.1007/s11252-015-0474-4
Klima- og miljødepartementet. Naturmangfoldloven, https://lovdata.no/dokument/NL/lov/%0A2009-06-19-100 (2009).
European Commission. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora, http://data.europa.eu/eli/dir/1992/43/oj (1992).
European Commission. Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species, http://data.europa.eu/eli/reg/2014/1143/oj (2014).
Polce, C., Kunin, W. E., Biesmeijer, J. C., Dauber, J. & Phillips, O. L. Alien and native plants show contrasting responses to climate and land use in Europe. Glob. Ecol. Biogeogr. 20, 367–379 (2011).
doi: 10.1111/j.1466-8238.2010.00619.x
Godefroid, S. & Ricotta, C. Alien plant species do have a clear preference for different land uses within urban environments. Urban Ecosyst. 21, 1189–1198 (2018).
doi: 10.1007/s11252-018-0792-4
Deutschewitz, K., Lausch, A., Kühn, I. & Klotz, S. Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Glob. Ecol. Biogeogr. 12, 299–311 (2003).
doi: 10.1046/j.1466-822X.2003.00025.x
Matthies, S. A., Rüter, S., Schaarschmidt, F. & Prasse, R. Determinants of species richness within and across taxonomic groups in urban green spaces. Urban Ecosyst. 20, 897–909 (2017).
doi: 10.1007/s11252-017-0642-9
Pyšek, P., Prach, K. & Mandák, B. Invasions of alien plants into habitats of Central European landscape: an historical pattern. In Plant invasions: Ecological Mechanisms and Human Responses (eds. Starfinger, U., Edwards, K., Kowarik, I. & Williamson, M.) 23–32 (1998).
Genovesi, P., Scalera, R. & van Ham, C. Invasive alien species: the urban dimension: case studies on strengthening local action in Europe, https://portals.iucn.org/library/node/29131 (2013).
Prestø, T. Bymarka. In Bli med ut! (eds. Fremstad, E. & Dolmen, D.) vol. 4, 5–11 (NTNU University Museum, Department of Natural History, https://www.ntnu.no/museum/bli-med-ut , 2005).
Prestø, T., Hagen, D. & Vange, V. Sembrafuru Pinus cembra invaderer bynært kulturlandskap. Eksempel fra Ladehalvøya, Trondheim. Blyttia 1, 1–68 (2013).
Henriksen, S. & Hilmo, O. Norwegian Red List of species — methods and results. Norwegian Red List of Species (2015).
Walker, S. et al. Properties of ecotones: Evidence from five ecotones objectively determined from a coastal vegetation gradient. J. Veg. Sci. 14, 579–590 (2003).
doi: 10.1111/j.1654-1103.2003.tb02185.x
Prinzig, A., Durka, W., Klotz, S. & Brandl, R. Which species become aliens? Evol. Ecol. 4, 385–405 (2002).
Lloyd, K. M. et al. Evidence on ecotone concepts from switch, environmental and anthropogenic ecotones. J. Veg. Sci. 11, 903–910 (2000).
doi: 10.2307/3236560
Maskell, L. C., Bullock, J. M., Smart, S. M., Thompson, K. & Hulme, P. E. The distribution and habitat associations of non-native plant species in urban riparian habitats. J. Veg. Sci. 17, 499–508 (2006).
doi: 10.1111/j.1654-1103.2006.tb02471.x
Sattler, T., Duelli, P., Obrist, M. K., Arlettaz, R. & Moretti, M. Response of arthropod species richness and functional groups to urban habitat structure and management. Landsc. Ecol. 25, 941–954 (2010).
doi: 10.1007/s10980-010-9473-2
Aronson, M. F. J. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).
doi: 10.1002/fee.1480
Holland, P. G. & Steyn, D. G. Vegetational responses to latitudinal variations in slope angle and aspect. J. Biogeogr. 2, 179 (1975).
doi: 10.2307/3037989
Moen, A. Vegetation. Vegetasjon (Norwegian Mapping Authority, 1999).
Trondheim Kommune. Trondheim Kommune, https://www.trondheim.kommune.no/ (2020).
Statistics Norway. Statistisk sentralbyrå, https://www.ssb.no/ (2018).
Norwegian Institute of Bioeconomy Research. AR5. Norwegian Institute of Bioeconomy Research, https://www.nibio.no/tema/jord/arealressurser/arealressurskart-ar5/ (2018).
Kartverket. SOSI., https://kartverket.no/geodataarbeid/Standarder/SOSI/ (2019).
Global Biodiversity Information Facility. Global Biodiversity Information Facility, https://www.gbif.org/ (2018).
Norwegian Biodiversity Information Centre. Artsdatabanken, https://www.biodiversity.no/ (2018).
GBIF.org. GBIF Occurrence Download (06 March 2018). Accessed from R via rgbif, https://doi.org/10.15468/dl.ruacxc (2018).
Gederaas, L., Moen, T. L., Skjelseth, S. & Larsen, L.-K. Alien species in Norway—with the Norwegian Black List 2012. (Norwegian Biodiversity Information Centre, 2012).
Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Research 2, (2013).
Oksanen, J. et al. Package ‘vegan’ - Community Ecology Package. R package version 2, 5–6 (2019).
Rousset, F. & Ferdy, J.-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography (Cop.). 37, 781–790 (2014).
doi: 10.1111/ecog.00566
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).
Beninde, J., Veith, M. & Hochkirch, A. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 18, 581–592 (2015).
pubmed: 25865805
doi: 10.1111/ele.12427
Brockerhoff, E. G., Jactel, H., Parrotta, J. A., Quine, C. P. & Sayer, J. Plantation forests and biodiversity: Oxymoron or opportunity? Biodivers. Conserv. 17, 925–951 (2008).
doi: 10.1007/s10531-008-9380-x
Ingram, D. J. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
pubmed: 25832402
doi: 10.1038/nature14324
Horák, J. et al. Green desert?: Biodiversity patterns in forest plantations. For. Ecol. Manage. 433, 343–348 (2019).
doi: 10.1016/j.foreco.2018.11.019
Tordoni, E. et al. Diversity patterns of alien and native plant species in Trieste port area: exploring the role of urban habitats in biodiversity conservation. Urban Ecosyst. 20, 1151–1160 (2017).
doi: 10.1007/s11252-017-0667-0
Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7 (2016).
Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147–186 (2000).
doi: 10.1016/S0304-3800(00)00354-9
Graham, C. H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A. T. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 19, 497–503 (2004).
pubmed: 16701313
doi: 10.1016/j.tree.2004.07.006
Speed, J. D. M. et al. Contrasting spatial, temporal and environmental patterns in observation and specimen based species occurrence data. PLoS Biol. 13, 1–17 (2018).
Wood, J. R. et al. No single driver of biodiversity: Divergent responses of multiple taxa across land use types. Ecosphere 8 (2017).
Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).
pubmed: 10821282
doi: 10.1038/35012228
Borgström, S. T., Elmqvist, T., Angelstam, P. & Alfsen-Norodom, C. Scale mismatches in management of urban landscapes. Ecol. Soc. 11 (2006).
Gaertner, M. et al. Non-native species in urban environments: patterns, processes, impacts and challenges. Biol. Invasions 19, 3461–3469 (2017).
doi: 10.1007/s10530-017-1598-7