Alchemical free energy calculations via metadynamics: Application to the theophylline-RNA aptamer complex.

alchemical free energy calculation binding pose collective variable metadynamics reweighting standard free energy

Journal

Journal of computational chemistry
ISSN: 1096-987X
Titre abrégé: J Comput Chem
Pays: United States
ID NLM: 9878362

Informations de publication

Date de publication:
30 07 2020
Historique:
received: 01 11 2019
revised: 03 04 2020
accepted: 26 04 2020
pubmed: 26 5 2020
medline: 16 6 2021
entrez: 26 5 2020
Statut: ppublish

Résumé

We propose a computational workflow for robust and accurate prediction of both binding poses and their affinities at early stage in designing drug candidates. Small, rigid ligands with few intramolecular degrees of freedom, for example, fragment-like molecules, have multiple binding poses, even at a single binding site, and their affinities are often close to each other. We explore various structures of ligand binding to a target through metadynamics using a small number of collective variables, followed by reweighting to obtain the atomic coordinates. After identifying each binding pose by cluster analysis, we perform alchemical free energy calculations on each structure to obtain the overall value. We applied this protocol in computing free energy of binding for the theophylline-RNA aptamer complex. Of the six (meta)stable structures found, the most favorable binding structure is consistent with the structure obtained by NMR. The overall free energy of binding reproduces the experimental values very well.

Identifiants

pubmed: 32449538
doi: 10.1002/jcc.26221
doi:

Substances chimiques

Aptamers, Nucleotide 0
Ligands 0
Theophylline C137DTR5RG

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1804-1819

Informations de copyright

© 2020 Wiley Periodicals, Inc.

Références

P. A. Kollman, Chem. Rev. 1993, 93, 2395.
J. Åqvist, C. Medina, J. E. Samuelsson, Protein Eng. 1994, 7, 385.
T. Simonson, G. Archontis, M. Karplus, Acc. Chem. Res. 2002, 35, 430.
H. Luo, K. Sharp, PNAS 2002, 99, 10399.
W. L. Jorgensen, Science 2004, 303, 1813.
F. M. Ytreberg, R. H. Swendsen, D. M. Zuckerman, J. Chem. Phys. 2006, 125, 184114.
D. Trzesniak, A.-P. E. Kunz, W. F. van Gunsteren, Chem. Phys. Chem. 2007, 8, 162.
E. Gallicchio, R. M. Levy, Adv. Protein Chem. Struct. Biol. 2011, 85, 27.
N. Homeyer, H. Gohlke, Mol. Inf. 2012, 31, 114.
J. C. Gumbart, B. Roux, C. Chipot, J. Chem. Theory Comput. 2013, 9(1), 794.
C. Chipot, WIREs Comput. Mol. Sci. 2014, 4, 71.
N. Hansen, W. F. van Gunsteren, J. Chem. Theory Comput. 2014, 10(7), 2632.
M. Aldeghi, A. Heifetz, M. J. Bodkin, S. Knappcd, P. C. Biggin, Chem. Sci. 2016, 7, 207.
A. Perez, J. A. Morrone, C. Simmerling, K. A. Dill, Curr. Opin. Struct. Biol. 2016, 36, 25.
D. L. Mobley, M. K. Gilson, Annu. Rev. Biophys. 2017, 46, 531.
D. A. Erlanson, R. S. McDowell, T. O'Brien, J. Med. Chem. 2004, 47(14), 3463.
P. J. Hajduk, J. Greer, Nature Rev. Drug Discov. 2007, 6, 211.
M. Congreve, G. Chessari, D. Tisi, A. J. Woodhead, J. Med. Chem. 2008, 51(13), 3661.
D. A. Erlanson, S. W. Fesik, R. E. Hubbard, W. Jahnke, H. Jhoti, Nature Rev. Drug Discov. 2016, 15, 605.
A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. USA 2002, 99, 12562.
F. L. Gervasio, A. Laio, M. Parrinello, J. Am. Chem. Soc. 2005, 127, 2600.
A. Laio, F. L. Gervasio, Rep. Prog. Phys. 2008, 71, 126601.
L. Sutto, S. Marsili, F. L. Gervasio, WIREs Comput. Mol. Sci. 2012, 2, 7712011.
V. Limongelli, M. Bonomi, M. Parrinello, PNAS 2013, 110, 6358.
M. K. Gilson, J. A. Given, B. L. Bush, J. A. McCammon, Biophys. J. 1997, 72, 1047.
S. Boresch, F. Tettinger, M. Leitgeb, M. Karplus, J. Phys. Chem. 2003, 107, 9535.
J. Wang, Y. Deng, B. Roux, Biophys. J. 2006, 91, 2798.
P. Tiwary, M. Parrinello, J. Phys. Chem. B 2014, 119(3), 736.
M. Leitgeb, C. Schröder, S. Boresch, J. Chem. Phys. 2005, 122, 084109.
J. W. Kaus, E. Harder, T. Lin, R. Abel, J. A. McCammon, L. Wang, J. Chem. Theory Comput. 2015, 11, 2670.
A. Ellington, J. Szostak, Nature 1990, 346, 818.
D. J. Patel, A. K. Suri, Rev. Mol. Biotechnol. 2000, 74, 39.
R. D. Jenison, S. C. Gill, A. Pardi, B. Polisky, Science 1994, 263, 1425.
E. E. Ferapontova, E. M. Olsen, K. V. Gothelf, J. Am. Chem. Soc. 2008, 130, 4256.
E. E. Ferapontova, K. V. Gothelf, Langmuir 2009, 25(8), 4279.
C. H. Lu, H. H. Yang, C. L. Z. Chen, G. N. Chen, Angew. Chem. Int. Ed. 2009, 48, 4785.
H. Gouda, I. D. Kuntz, D. A. Case, P. A. Kollman, Biopolymers 2003, 68, 16.
H. Freedman, L. P. Huynh, L. Le, T. E. CheathamIII, J. A. Tuszynski, T. N. Truong, J. Phys. Chem. B 2010, 114, 2227.
Y. Tanida, M. Ito, H. Fujitani, Chem. Phys. 2007, 337, 135.
I. J. General, J. Chem. Theory Comput. 2010, 6, 2520.
D. L. Mobley, J. D. Chodera, K. A. Dill, J. Chem. Phys. 2006, 125, 084902.
G. Bussi, A. Laio, M. Parrinello, Phys. Rev. Lett. 2006, 96, 090601.
A. Barducci, G. Bussi, M. Parrinello, Phys. Rev. Lett. 2008, 100, 020603.
J. F. Dama, M. Parrinello, G. A. Voth, Phys. Rev. Lett. 2014, 112, 240602.
O. Valsson, P. Tiwary, M. Parrinello, Annu. Rev. Phys. Chem. 2016, 67, 159.
X. Daura, K. Gademann, B. Jaun, D. Seebach, W. F. van Gunsteren, A. E. Mark, Angew. Chem. Int. Ed. 1999, 38, 236.
M. Mihailescu, M. K. Gilson, Biophys. J. 2004, 87, 23.
M. R. Shirts, D. L. Mobley, J. D. Chodera, V. S. Pande, J. Phys. Chem. B 2007, 111, 13052.
T. C. Beutler, A. E. Mark, R. C. Schalk, P. R. Gerber, W. F. Gunsteren, Chem. Phys. Lett. 1994, 222, 529.
M. R. Shirts, V. S. Pande, J. Chem. Phys. 2005, 122, 134508.
R. W. Zwanzig, J. Chem. Phys. 1954, 22, 1420.
C. H. Bennett, J. Comput. Phys. 1976, 22, 245.
D. A. Kofke, P. T. Cummings, Fluid Phase Equilib. 1998, 151, 41.
N. Lu, J. K. Singh, D. A. Kofke, J. Chem. Phys. 2003, 118, 2977.
M. R. Shirts, E. Bair, G. Hooker, V. S. Pande, Phys. Rev. Lett. 2003, 91, 140601.
M. R. Shirts, J. D. Chodera, J. Chem. Phys. 2008, 129, 124105.
B. Efron, G. Gong, Am. Stat. 1983, 37, 36.
P. V. Klimovich, M. R. Shirts, D. L. Mobley, J Comput. Aided Mol. Des. 2015, 29, 397.
G. R. Zimmermann, R. D. Jenison, C. L. Wick, J.-P. Simorre, A. Pardi, Nature Struct. Biol. 1997, 4, 644
G. R. Zimmermann, C. L. Wick, T. P. Shields, R. D. Jenison, A. Pardi, RNA 2000, 6, 659.
N. Sibille, A. Pardi, J.-P. Simorre, M. Blackledge, J. Am. Chem. Soc. 2001, 123, 12135.
G. M. Clore, J. Kuszewski, J. Am. Chem. Soc. 2003, 125, 1518.
J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. Hauser, C. Simmerling, J. Chem. Theory Comput. 2015, 11(8), 3696.
A. W. S. da Silva, W. F. Vranken, BMC Res. Notes 2012, 5, 367.
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79, 926.
S. J. I and T. E. CheathamIII, J. Phys. Chem. B 112, 9020 (2008).
P. Li, B. P. Roberts, D. K. Chakravorty, K. M. Merz Jr., J. Chem. Theory Comput. 2013, 9, 2733.
H. Fujitani, A. Matsuura, S. Sakai, H. Sato, Y. Tanida, J. Chem. Theory Comput. 2009, 5, 1155.
J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2004, 25, 1157.
C. I. Bayly, P. Cieplak, W. D. Cornell, P. A. Kollman, J. Phys. Chem. 1993, 97, 10269.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al., Gaussian 09 Revision D.01, Gaussian Inc, Wallingford, CT 2013.
U. Essmann, L. Perera, M. L. Berkowitz, J. Chem. Phys. 1995, 103, 8577.
B. Hess, H. Bekker, H. J. C. Berendsen, J. Comput. Chem. 1997, 18, 1463.
S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, E. Lindahl, Bioinformatics 2013, 29(7), 845.
G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 2007, 126, 014101.
M. Parinello, A. Rahman, J. Appl. Phys. 1981, 52, 7182.
M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R. A. Broglia, M. Parrinello, Comput. Phys. Commun. 2009, 180, 1961.
R. H. Byrd, P. Lu, J. Nocedal, SIAM J. Scientif. Statistic. Comput. 1995, 16, 1190.
H. J. Berendsen, J. P. Postma, A. DiNola, J. R. Haak, J. Chem. Phys. 1984, 81, 3684.
M. R. Shirts and D. L. Mobley, in Biomolecular Simulations: Methods and Protocols. Vol. 924, Springer, 2013. p. 271.
W. L. DeLano, The Pymol Molecular Graphics System, DeLano Scientific, San Carlos, CA 2002.

Auteurs

Yoshiaki Tanida (Y)

Fujitsu Laboratories Ltd., Atsugi, Kanagawa, Japan.

Azuma Matsuura (A)

Fujitsu Laboratories Ltd., Atsugi, Kanagawa, Japan.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans

Classifications MeSH