Predicting the unexpected in stomatal gas exchange: not just an open-and-shut case.
Arabidopsis
/ genetics
Arabidopsis Proteins
/ genetics
Biological Transport
Carbon
/ metabolism
Cell Membrane
/ physiology
Genetic Engineering
Kinetics
Models, Theoretical
Mutation
Osmosis
Plant Leaves
/ physiology
Plant Stomata
/ physiology
Proton-Translocating ATPases
/ genetics
Vacuoles
/ physiology
Water
/ physiology
carbon fixation
guard cell
mathematical modelling
stomata
water use efficiency
Journal
Biochemical Society transactions
ISSN: 1470-8752
Titre abrégé: Biochem Soc Trans
Pays: England
ID NLM: 7506897
Informations de publication
Date de publication:
30 06 2020
30 06 2020
Historique:
received:
01
03
2020
revised:
01
05
2020
accepted:
04
05
2020
pubmed:
27
5
2020
medline:
20
2
2021
entrez:
27
5
2020
Statut:
ppublish
Résumé
Plant membrane transport, like transport across all eukaryotic membranes, is highly non-linear and leads to interactions with characteristics so complex that they defy intuitive understanding. The physiological behaviour of stomatal guard cells is a case in point in which, for example, mutations expected to influence stomatal closing have profound effects on stomatal opening and manipulating transport across the vacuolar membrane affects the plasma membrane. Quantitative mathematical modelling is an essential tool in these circumstances, both to integrate the knowledge of each transport process and to understand the consequences of their manipulation in vivo. Here, we outline the OnGuard modelling environment and its use as a guide to predicting the emergent properties arising from the interactions between non-linear transport processes. We summarise some of the recent insights arising from OnGuard, demonstrate its utility in interpreting stomatal behaviour, and suggest ways in which the OnGuard environment may facilitate 'reverse-engineering' of stomata to improve water use efficiency and carbon assimilation.
Identifiants
pubmed: 32453378
pii: 224994
doi: 10.1042/BST20190632
pmc: PMC7329339
doi:
Substances chimiques
Arabidopsis Proteins
0
Water
059QF0KO0R
Carbon
7440-44-0
Proton-Translocating ATPases
EC 3.6.3.14
AHA1 protein, Arabidopsis
EC 3.6.3.14. -
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
881-889Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/L001276/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/L019025/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/M001601/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/N01832X/1
Pays : United Kingdom
Informations de copyright
© 2020 The Author(s).
Références
New Phytol. 2008;178(4):703-718
pubmed: 18373649
New Phytol. 2019 Oct;224(1):21-36
pubmed: 31069803
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5549-54
pubmed: 12671068
Plant Physiol. 2012 Jul;159(3):1026-42
pubmed: 22635116
Biochem J. 2008 Nov 1;415(3):409-16
pubmed: 18637793
Plant Physiol. 2010 Nov;154(3):1232-43
pubmed: 20805328
Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13372-7
pubmed: 20624981
Nature. 2001 Jan 18;409(6818):391-5
pubmed: 11201753
Curr Opin Plant Biol. 2016 Oct;33:157-167
pubmed: 27518594
Plant Physiol. 2016 Jan;170(1):33-42
pubmed: 26628748
Plant Physiol. 2014 Sep;166(1):314-26
pubmed: 25037208
Plant Physiol. 1998 Feb;116(2):785-95
pubmed: 9489023
Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11963-8
pubmed: 12189201
Planta. 1981 Dec;153(4):376-87
pubmed: 24276943
Plant Physiol. 2017 Jun;174(2):478-486
pubmed: 28341770
Planta. 1990 Feb;180(3):445-55
pubmed: 24202027
Nat Biotechnol. 2013 May;31(5):448-52
pubmed: 23396014
Plant Cell Environ. 2019 Aug;42(8):2399-2410
pubmed: 31032976
Curr Opin Plant Biol. 2000 Jun;3(3):196-204
pubmed: 10837261
Plant Physiol. 2001 Jan;125(1):42-5
pubmed: 11154292
Plant Physiol. 2017 Jun;174(2):680-688
pubmed: 28432256
Plant Physiol. 2014 Apr;164(4):1593-9
pubmed: 24596330
Plant Physiol. 2017 Jun;174(2):487-519
pubmed: 28408539
Planta. 1997;202(1):18-27
pubmed: 9177048
J Membr Biol. 1997 Aug 1;158(3):241-56
pubmed: 9263886
PLoS Comput Biol. 2014 Nov 13;10(11):e1003930
pubmed: 25393147
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):533-8
pubmed: 24367097
Plant Physiol. 2020 Apr;182(4):1833-1835
pubmed: 31988199
Plant Physiol. 2016 Nov;172(3):1371-1392
pubmed: 27609861
Planta. 1973 Mar;110(1):63-70
pubmed: 24474312
J Biol Chem. 2001 Feb 2;276(5):3215-21
pubmed: 11042178
EMBO J. 2007 Jul 11;26(13):3216-26
pubmed: 17557075
New Phytol. 2009;182(2):380-391
pubmed: 19192193
Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):1135-40
pubmed: 16418285
Plant Sci. 2016 Oct;251:65-74
pubmed: 27593464
Annu Rev Plant Biol. 2007;58:219-47
pubmed: 17209798
Science. 2019 Mar 29;363(6434):1456-1459
pubmed: 30923223
New Phytol. 2013 Dec;200(4):1049-63
pubmed: 24033256
Cell. 2001 Dec 14;107(6):711-4
pubmed: 11747807
Plant Cell. 2017 Nov;29(11):2921-2939
pubmed: 29093213
J Exp Bot. 2006;57(3):609-21
pubmed: 16397000
Plant Physiol. 2017 Jun;174(2):572-582
pubmed: 28062836
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10726-31
pubmed: 17563365
J Gen Physiol. 1992 Apr;99(4):615-44
pubmed: 1534573
Plant Physiol. 2016 Jul;171(3):2008-16
pubmed: 27208264
Plant J. 2011 Aug;67(4):570-82
pubmed: 21518051
Plant Physiol. 2012 Jul;159(3):1235-51
pubmed: 22635112
Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12361-8
pubmed: 11027317
Nature. 2003 Aug 21;424(6951):901-8
pubmed: 12931178
Plant Cell. 2015 May;27(5):1445-60
pubmed: 25966761
Plant Physiol. 2014 Apr;164(4):1600-18
pubmed: 24449709
Nature. 1990 Aug 23;346(6286):766-9
pubmed: 2388696
Plant Physiol. 2016 Aug;171(4):2731-43
pubmed: 27261063
Plant Physiol. 2014 Apr;164(4):1556-70
pubmed: 24578506
New Phytol. 2009 Jan;181(2):275-294
pubmed: 19121028
Plant Physiol. 2012 Dec;160(4):1956-67
pubmed: 23090586
Annu Rev Plant Biol. 2010;61:561-91
pubmed: 20192751
Plant Physiol. 1999 Jan;119(1):277-88
pubmed: 9880370
Plant Cell Environ. 2013 Sep;36(9):1691-9
pubmed: 23730938