Regulation on Calcium Oxalate Crystallization and Protection on HK-2 Cells of Tea Polysaccharides with Different Molecular Weights.
Calcium Oxalate
/ metabolism
Cell Death
/ drug effects
Cell Line
Cell Shape
/ drug effects
Crystallization
Cytoprotection
/ drug effects
Humans
L-Lactate Dehydrogenase
/ metabolism
Molecular Weight
Polysaccharides
/ pharmacology
Protective Agents
/ pharmacology
Reactive Oxygen Species
/ metabolism
Spectroscopy, Fourier Transform Infrared
Static Electricity
Tea
/ chemistry
Time Factors
X-Ray Diffraction
Journal
Oxidative medicine and cellular longevity
ISSN: 1942-0994
Titre abrégé: Oxid Med Cell Longev
Pays: United States
ID NLM: 101479826
Informations de publication
Date de publication:
2020
2020
Historique:
received:
20
01
2020
accepted:
15
04
2020
entrez:
27
5
2020
pubmed:
27
5
2020
medline:
7
1
2021
Statut:
epublish
Résumé
The regulation on calcium oxalate (CaOx) crystallization and protective effect on human proximal tubular epithelial cells (HK-2) of four green tea polysaccharides (TPSs) with molecular weights of 10.88 (TPS0), 8.16 (TPS1), 4.82 (TPS2), and 2.3 kDa (TPS3) were comparatively studied. XRD, Fourier transform infrared spectroscopy, and scanning electron microscopy results revealed that TPS1, TPS2, and TPS3 can increase the percentage of the dihydrate crystalline phase in CaOx crystals and reduce the size of CaOx monohydrate crystals. TPSs increased the absolute value of the zeta potential of CaOx crystal and inhibited crystal nucleation and aggregation. The nucleation inhibition rates of TPS1, TPS2, and TPS3 to CaOx crystallization were 56.67%, 75.52%, and 52.92%, respectively, and their aggregation inhibition rates were 22.34%, 47.59%, and 21.59%, respectively. TPS preprotection can alleviate the oxidative damage of HK-2 cells caused by oxalate, increase cell viability, protect cell morphology, and reduce lactate dehydrogenase release and reactive oxygen species levels. The degraded TSPs, especially TPS2 with moderate molecular weight, may be used as a green drug to inhibit stone formation.
Identifiants
pubmed: 32454940
doi: 10.1155/2020/5057123
pmc: PMC7243009
doi:
Substances chimiques
Polysaccharides
0
Protective Agents
0
Reactive Oxygen Species
0
Tea
0
Calcium Oxalate
2612HC57YE
L-Lactate Dehydrogenase
EC 1.1.1.27
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5057123Informations de copyright
Copyright © 2020 Hong Liu et al.
Déclaration de conflit d'intérêts
There are no conflicts of interest to declare.
Références
Nutrients. 2018 Sep 10;10(9):
pubmed: 30201943
Nephrol Dial Transplant. 2000 Mar;15(3):366-74
pubmed: 10692522
Oxid Med Cell Longev. 2018 Nov 21;2018:5297539
pubmed: 30584463
Carbohydr Res. 1991 Sep 18;217:181-90
pubmed: 1797400
Pharm Biol. 2011 Dec;49(12):1298-305
pubmed: 22077165
Mar Drugs. 2012 Jan;10(1):119-30
pubmed: 22363225
J Ethnopharmacol. 2009 Feb 25;122(1):106-16
pubmed: 19118615
Anal Biochem. 2001 Aug 15;295(2):158-67
pubmed: 11488617
Mol Med Rep. 2018 Jul;18(1):486-494
pubmed: 29750296
Food Chem. 2017 Jan 15;215:76-83
pubmed: 27542452
Int J Biol Macromol. 2016 Oct;91:1025-32
pubmed: 27341780
Int J Biol Macromol. 2017 Feb;95:132-137
pubmed: 27865951
Int J Nanomedicine. 2019 Jun 07;14:4277-4292
pubmed: 31239679
Transl Androl Urol. 2014 Sep 1;3(3):256-276
pubmed: 25383321
Urol Res. 2008 Dec;36(6):283-7
pubmed: 19002446
Life Sci. 2006 Oct 4;79(19):1789-95
pubmed: 16820173
Food Nutr Res. 2017 Nov 13;61(1):1399770
pubmed: 31139040
J Struct Biol. 2003 Jul;143(1):14-23
pubmed: 12892722
Carbohydr Polym. 2014 Aug 8;108:41-5
pubmed: 24751245
Food Res Int. 2018 May;107:567-577
pubmed: 29580521
Int J Mol Sci. 2018 Dec 13;19(12):
pubmed: 30551572
Spectrochim Acta A Mol Biomol Spectrosc. 2012 Jul;93:260-5
pubmed: 22484261
Adv Urol. 2018 Feb 4;2018:3068365
pubmed: 29515627
Clin Rev Bone Miner Metab. 2011 Dec;9(3-4):187-197
pubmed: 22229020
Int Urol Nephrol. 2008;40(3):589-94
pubmed: 17721827
Biomed Res Int. 2013;2013:292953
pubmed: 24151593
J Am Soc Nephrol. 2005 Jul;16(7):1904-8
pubmed: 15930089