Poor neural and perceptual phoneme discrimination during acoustic variation in dyslexia.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
26 05 2020
Historique:
received: 02 10 2019
accepted: 04 05 2020
entrez: 28 5 2020
pubmed: 28 5 2020
medline: 15 12 2020
Statut: epublish

Résumé

Whereas natural acoustic variation in speech does not compromise phoneme discrimination in healthy adults, it was hypothesized to be a challenge for developmental dyslexics. We investigated dyslexics' neural and perceptual discrimination of native language phonemes during acoustic variation. Dyslexics and non-dyslexics heard /æ/ and /i/ phonemes in a context with f

Identifiants

pubmed: 32457322
doi: 10.1038/s41598-020-65490-3
pii: 10.1038/s41598-020-65490-3
pmc: PMC7250843
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8646

Références

Kuhl, P. K. Early language acquisition: cracking the speech code. Nat. Rev. Neurosci. 5, 831–843 (2004).
pubmed: 15496861 doi: 10.1038/nrn1533
Shestakova, A. et al. Abstract phoneme representations in the left temporal cortex: magnetic mismatch negativity study. Neuroreport 13, 1813–1816 (2002).
pubmed: 12395130 doi: 10.1097/00001756-200210070-00025
Dehaene-Lambertz, G. & Pena, M. Electrophysiological evidence for automatic phonetic processing in neonates. Neuroreport 12, 3155–3158 (2001).
pubmed: 11568655 doi: 10.1097/00001756-200110080-00034
Kere, J. The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype. Biochem. Biophys. Res. Commun. 452, 236–243 (2014).
pubmed: 25078623 doi: 10.1016/j.bbrc.2014.07.102
Peterson, R. L. & Pennington, B. F. Developmental dyslexia. Annu. Rev. of Clinical Psychol. 11, 283–307 (2015).
doi: 10.1146/annurev-clinpsy-032814-112842
Lyon, G. R., Shaywitz, S. E. & Shaywitz, B. A. A Definition of Dyslexia. Ann. Dyslexia 53, 1–14 (2003).
doi: 10.1007/s11881-003-0001-9
Shaywitz, S. E. Dyslexia. N. Engl. J. Med. 338, 307–312 (1998).
pubmed: 9445412 doi: 10.1056/NEJM199801293380507
Eden, G. F., Olulade, O. A., Evans, T. M., Krafnick, A. J. & Alkire, D. R. Developmental Dyslexia. In Neurobiology of Language 815–826, https://doi.org/10.1016/B978-0-12-407794-2.00065-1 (2016).
doi: 10.1016/B978-0-12-407794-2.00065-1
Galaburda, A. M., LoTurco, J., Ramus, F., Fitch, R. H. & Rosen, G. D. From genes to behavior in developmental dyslexia. Nat. Neurosci. 9, 1213–1217 (2006).
pubmed: 17001339 doi: 10.1038/nn1772
Kere, J. Molecular genetics and molecular biology of dyslexia. Wiley Interdiscip. Rev. Cogn. Sci. 2, 441–448 (2011).
pubmed: 26302203 doi: 10.1002/wcs.138
Giraud, A. L. & Ramus, F. Neurogenetics and auditory processing in developmental dyslexia. Curr. Opin. Neurobiol. 23, 37–42 (2013).
pubmed: 23040541 doi: 10.1016/j.conb.2012.09.003
Vellutino, F. R., Fletcher, J. M., Snowling, M. J. & Scanlon, D. M. Specific reading disability (dyslexia): what have we learned in the past four decades? J. Child Psychol. Psychiatry 1, 2–40 (2004).
doi: 10.1046/j.0021-9630.2003.00305.x
Boets, B. et al. Intact but less accessible phonetic representations in adults with dyslexia. Science (80-). 342, 1251–1255 (2013).
doi: 10.1126/science.1244333
Hämäläinen, J. A., Salminen, H. K. & Leppänen, P. H. T. Basic Auditory Processing Deficits in Dyslexia: Systematic Review of the Behavioral and Event-Related Potential/ Field Evidence. J. Learn. Disabil. 46, 413–427 (2013).
pubmed: 22323280 doi: 10.1177/0022219411436213
Kujala, T. & Näätänen, R. The mismatch negativity in evaluating central auditory dysfunction in dyslexia. Neurosci. Biobehav. Rev. 25, 535–543 (2001).
pubmed: 11595273 doi: 10.1016/S0149-7634(01)00032-X
Kujala, T. M. The role of early auditory discrimination deficits in language disorders. J. Psychophysiol. 21, 239–250 (2007).
doi: 10.1027/0269-8803.21.34.239
Kujala, T., Tervaniemi, M. & Schröger, E. The mismatch negativity in cognitive and clinical neuroscience: Theoretical and methodological considerations. Biol. Psychol. 74, 1–19 (2007).
pubmed: 16844278 doi: 10.1016/j.biopsycho.2006.06.001
Näätänen, R., Kujala, T. & Winkler, I. Auditory processing that leads to conscious perception: A unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology 48, 4–22 (2011).
pubmed: 20880261 doi: 10.1111/j.1469-8986.2010.01114.x
Näätänen, R., Simpson, M. & Loveless, N. E. Stimulus deviance and evoked potentials. Biol. Psychol. 14, 53–98 (1982).
pubmed: 7104425 doi: 10.1016/0301-0511(82)90017-5
Alho, K. et al. Processing of novel sounds and frequency changes in the human auditory cortex: Magnetoencephalographic recordings. Psychophysiology 35, 211–224 (1998).
pubmed: 9529947 doi: 10.1111/1469-8986.3520211
Horváth, J., Winkler, I. & Bendixen, A. Do N1/MMN, P3a, and RON form a strongly coupled chain reflecting the three stages of auditory distraction? Biol. Psychol. 79, 139–147 (2008).
pubmed: 18468765 doi: 10.1016/j.biopsycho.2008.04.001
Näätänen, R. et al. Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature 385, 432–434 (1997).
pubmed: 9009189 doi: 10.1038/385432a0
Näätänen, R. The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm). Psychophysiology 38, 1–21 (2001).
pubmed: 11321610 doi: 10.1111/1469-8986.3810001
Kujala, T. & Leminen, M. Low-level neural auditory discrimination dysfunctions in specific language impairment—A review on mismatch negativity findings. Dev. Cogn. Neurosci. 28, 65–75 (2017).
pubmed: 29182947 pmcid: 6987907 doi: 10.1016/j.dcn.2017.10.005
Maurer, U. et al. Neurophysiology in preschool improves behavioral prediction of reading ability throughout primary school. Biol. Psychiatry 66, 341–348 (2009).
pubmed: 19423082 doi: 10.1016/j.biopsych.2009.02.031
Van Zuijen, T. L. et al. Temporal auditory processing at 17 months of age is associated with preliterate language comprehension and later word reading fluency: An ERP study. Neurosci. Lett. 528, 31–35 (2012).
pubmed: 22981882 doi: 10.1016/j.neulet.2012.08.058
Schaadt, G. & Männel, C. Phonemes, words, and phrases: Tracking phonological processing in pre-schoolers developing dyslexia. Clin. Neurophysiol. 130, 1329–1341 (2019).
pubmed: 31200240 doi: 10.1016/j.clinph.2019.05.018
Bitz, U., Gust, K., Spitzer, M. & Kiefer, M. Phonological deficit in school children is reflected in the mismatch negativity. Neuroreport 18, 911–915 (2007).
pubmed: 17515800 doi: 10.1097/WNR.0b013e32810f2e25
Lachmann, T., Berti, S., Kujala, T. & Schröger, E. Diagnostic subgroups of developmental dyslexia have different deficits in neural processing of tones and phonemes. Int. J. Psychophysiol. 56, 105–120 (2005).
pubmed: 15804446 doi: 10.1016/j.ijpsycho.2004.11.005
Lovio, R., Näätänen, R. & Kujala, T. Abnormal pattern of cortical speech feature discrimination in 6-year-old children at risk for dyslexia. Brain Res. 1335, 53–62 (2010).
pubmed: 20381471 doi: 10.1016/j.brainres.2010.03.097
Schulte-Körne, G., Deimel, W., Bartling, J. & Remschmidt, H. Speech perception deficit in dyslexic adults as measured by mismatch negativity (MMN). Int. J. Psychophysiol. 40, 77–87 (2001).
pubmed: 11166109 doi: 10.1016/S0167-8760(00)00152-5
Kujala, T. et al. Speech- and sound-segmentation in dyslexia: Evidence for a multiple-level cortical impairment. Eur. J. Neurosci. 24, 2420–2427 (2006).
pubmed: 17074059 doi: 10.1111/j.1460-9568.2006.05100.x
Fosker, T. & Thierry, G. P300 investigation of phoneme change detection in dyslexic adults. Neurosci. Lett. 357, 171–174 (2004).
pubmed: 15003277 doi: 10.1016/j.neulet.2003.12.084
Corbera, S., Escera, C. & Artigas, J. Impaired duration mismatch negativity in developmental dyslexia. Neuroreport 17, 1051–1055 (2006).
pubmed: 16791102 doi: 10.1097/01.wnr.0000221846.43126.a6
Baldeweg, T., Richardon, A., Watkins, S., Foale, C. & Gruzelier, G. Impaired auditory frequency discrimination in dyslexia detected with mismatch evoked potentials. Ann. Neurol. 45, 495–503 (1999).
pubmed: 10211474 doi: 10.1002/1531-8249(199904)45:4<495::AID-ANA11>3.0.CO;2-M
Bishop, D. V. M. Using mismatch negativity to study central auditory processing in developmental language and literacy impairments: Where are we, and where should we be going? Psychol. Bull. 133, 651–672 (2007).
pubmed: 17592960 doi: 10.1037/0033-2909.133.4.651
Kujala, T. et al. Basic auditory dysfunction in dyslexia as demonstrated by brain activity measurements. Psychophysiology 37, 262–266 (2000).
pubmed: 10731777 doi: 10.1111/1469-8986.3720262
Kujala, T., Belitz, S., Tervaniemi, M. & Näätänen, R. Auditory sensory memory disorder in dyslexic adults as indexed by the mismatch negativity. Eur. J. Neurosci. 17, 1323–1327 (2003).
pubmed: 12670323 doi: 10.1046/j.1460-9568.2003.02559.x
Kujala, T., Lovio, R., Lepistö, T., Laasonen, M. & Näätänen, R. Evaluation of multi-attribute auditory discrimination in dyslexia with the mismatch negativity. Clin. Neurophysiol. 117, 885–893 (2006).
pubmed: 16497552 doi: 10.1016/j.clinph.2006.01.002
Werker, J. F. & Tees, R. C. Speech perception in severely disabled and average reading children. Can. J. Psychol. 41, 48–61 (1987).
pubmed: 3502888 doi: 10.1037/h0084150
Bogliotti, C., Serniclaes, W., Messaoud-Galusi, S. & Sprenger-Charolles, L. Discrimination of speech sounds by children with dyslexia: Comparisons with chronological age and reading level controls. J. Exp. Child Psychol. 101, 137–155 (2008).
pubmed: 18462745 doi: 10.1016/j.jecp.2008.03.006
Godfrey, J. J., Syrdal-Lasky, K., Millay, K. K. & Knox, C. M. Performance of dyslexic children on speech perception tests. J. Exp. Child Psychol. 32, 401–424 (1981).
pubmed: 7320677 doi: 10.1016/0022-0965(81)90105-3
Noordenbos, M. W. & Serniclaes, W. The categorical perception deficit in dyslexia: A meta-analysis. Sci. Stud. Read. 19, 340–359 (2015).
doi: 10.1080/10888438.2015.1052455
Virtala, P., Partanen, E., Tervaniemi, M. & Kujala, T. Neural discrimination of speech sound changes in a variable context occurs irrespective of attention and explicit awareness. Biol. Psychol. 132, 217–227 (2018).
pubmed: 29305875 doi: 10.1016/j.biopsycho.2018.01.002
Serniclaes, W. Allophonic theory of dyslexia: A short overview. JSM Commun. Disord. 2, 1010 (2018).
Serniclaes, W. & Sprenger-Charolles, L. Categorical perception of speech sounds and dyslexia. Curr. Psychol. Lett. Behav. brain Cogn. 1 (2003).
Noordenbos, M. W., Segers, E., Serniclaes, W., Mitterer, H. & Verhoeven, L. Neural evidence of allophonic perception in children at risk for dyslexia. Neuropsychologia 50, 2010–2017 (2012).
pubmed: 22569214 doi: 10.1016/j.neuropsychologia.2012.04.026
Zhang, Y. et al. Universality of categorical perception deficit in developmental dyslexia: An investigation of Mandarin Chinese tones. J. Child Psychol. Psychiatry Allied Discip. 53, 874–882 (2012).
doi: 10.1111/j.1469-7610.2012.02528.x
Hoonhorst, I. et al. French native speakers in the making: From language-general to language-specific voicing boundaries. J. Exp. Child Psychol. 104, 353–366 (2009).
pubmed: 19709671 doi: 10.1016/j.jecp.2009.07.005
Lum, J. A. G., Ullman, M. T. & Conti-Ramsden, G. Procedural learning is impaired in dyslexia: Evidence from a meta-analysis of serial reaction time studies. Res. Dev. Disabil. 34, 3460–3476 (2013).
pubmed: 23920029 pmcid: 3784964 doi: 10.1016/j.ridd.2013.07.017
Gabay, Y. & Holt, L. L. Incidental learning of sound categories is impaired in developmental dyslexia. Cortex 73, 131–143 (2015).
pubmed: 26409017 pmcid: 4689640 doi: 10.1016/j.cortex.2015.08.008
Gabay, Y., Thiessen, E. D. & Holt, L. L. Impaired statistical learning in developmental dyslexia. J. Speech, Lang. Hear. Res. 58, 934–945 (2015).
doi: 10.1044/2015_JSLHR-L-14-0324
Kimppa, L., Shtyrov, Y., Partanen, E. & Kujala, T. Impaired neural mechanism for online novel word acquisition in dyslexic children. Sci. Rep. 8, 1–12 (2018).
doi: 10.1038/s41598-018-31211-0
Perrachione, T. K. et al. Dysfunction of rapid neural adaptation in dyslexia. Neuron 92, 1383–1397 (2016).
pubmed: 28009278 pmcid: 5226639 doi: 10.1016/j.neuron.2016.11.020
Ahissar, M. Dyslexia and the anchoring-deficit hypothesis. Trends Cogn. Sci. 11, 458–465 (2007).
pubmed: 17983834 doi: 10.1016/j.tics.2007.08.015
Harmony, T. et al. Primary task demands modulate P3a amplitude. Cogn. Brain Res. 9, 53–60 (2000).
doi: 10.1016/S0926-6410(99)00044-0
Nagarajan, S. et al. Cortical auditory signal processing in poor readers. Proc. Natl. Acad. Sci. 96, 6483–6488 (1999).
pubmed: 10339614 doi: 10.1073/pnas.96.11.6483
Nevala, J., Kairaluoma, L., Ahonen, T., Aro, M. & Holopainen, L. Lukemis- ja kirjoittamistaitojen yksilötestistö nuorille ja aikuisille [Individual test material for assessing dyslexia in youth and in adult age] (Standardization version). (2006).
Laasonen, M., Lehtinen, M., Leppämäki, S., Tani, P. & Hokkanen, L. Project DyAdd: Phonological processing, reading, spelling, and arithmetic in adults with dyslexia or ADHD. J. Learn. Disabil. 43, 3–14 (2010).
pubmed: 19723980 doi: 10.1177/0022219409335216
Lefly, D. L. & Pennington, B. F. Reliability and validity of the adult reading history questionnaire. J. Learn. Disabil. 33, 286–296 (2000).
pubmed: 15505966 doi: 10.1177/002221940003300306
Kessler, R. C. et al. The World Health Organization Adult ADHD Self-Report Scale (ASRS): a short screening scale for use in the general population. Psychol. Med. 35, 245–256 (2005).
pubmed: 15841682 doi: 10.1017/S0033291704002892
Wiik, K. Finnish and English vowels. A comparison with special reference to the learning problems met by native speakers of Finnish learning English. (Publications of University of Turku, 1965).
Boersma, P. & Weenink, D. Praat: Doing phonetics by computer. Retrieved from http://www.praat.org/ (2013).
Ille, N., Berg, P. & Scherg, M. Artifact correction of the ongoing EEG using spatial filters based on artifact and brain signal topographies. J. Clin. Neurophysiol. 19, 113–124 (2002).
pubmed: 11997722 doi: 10.1097/00004691-200203000-00002

Auteurs

P Virtala (P)

Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland. paula.virtala@helsinki.fi.
Cognitive Brain Research Unit, Institute for Behavioural Sciences, University of Helsinki, Helsinki, Finland. paula.virtala@helsinki.fi.

S Talola (S)

Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Cognitive Brain Research Unit, Institute for Behavioural Sciences, University of Helsinki, Helsinki, Finland.

E Partanen (E)

Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Cognitive Brain Research Unit, Institute for Behavioural Sciences, University of Helsinki, Helsinki, Finland.
Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.

T Kujala (T)

Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Cognitive Brain Research Unit, Institute for Behavioural Sciences, University of Helsinki, Helsinki, Finland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH