Unveiling the Dynamical Assembly of Magnetic Nanocrystal Zig-Zag Chains via In Situ TEM Imaging in Liquid.

anisotropic nanocrystals assembly in situ liquid TEM magnetic nanocubes

Journal

Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338

Informations de publication

Date de publication:
06 2020
Historique:
received: 18 12 2019
revised: 23 02 2020
accepted: 21 04 2020
pubmed: 28 5 2020
medline: 24 6 2021
entrez: 28 5 2020
Statut: ppublish

Résumé

The controlled assembly of colloidal magnetic nanocrystals is key to many applications such as nanoelectronics, storage memory devices, and nanomedicine. Here, the motion and ordering of ferrimagnetic nanocubes in water via liquid-cell transmission electron microscopy is directly imaged in situ. Through the experimental analysis, combined with molecular dynamics simulations and theoretical considerations, it is shown that the presence of highly competitive interactions leads to the formation of stable monomers and dimers, acting as nuclei, followed by a dynamic growth of zig-zag chain-like assemblies. It is demonstrated that such arrays can be explained by first, a maximization of short-range electrostatic interactions, which at a later stage become surpassed by magnetic forces acting through the easy magnetic axes of the nanocubes, causing their tilted orientation within the arrays. Moreover, in the confined volume of liquid in the experiments, interactions of the nanocube surfaces with the cell membranes, when irradiated at relatively low electron dose, slow down the kinetics of their self-assembly, facilitating the identification of different stages in the process. The study provides crucial insights for the formation of unconventional linear arrays made of ferrimagnetic nanocubes that are essential for their further exploitation in, for example, magnetic hyperthermia, magneto-transport devices, and nanotheranostic tools.

Identifiants

pubmed: 32459051
doi: 10.1002/smll.201907419
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1907419

Informations de copyright

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

a) M. A. Boles, M. Engel, D. V. Talapin, Chem. Rev. 2016, 116, 11220;
b) A. Castelli, J. de Graaf, S. Marras, R. Brescia, L. Goldoni, L. Manna, M. P. Arciniegas, Nat. Commun. 2018, 9, 1141;
c) T. Paik, C. B. Murray, Nano Lett. 2013, 13, 2952;
d) Y. Taniguchi, M. A. B. Sazali, Y. Kobayashi, N. Arai, T. Kawai, T. Nakashima, ACS Nano 2017, 11, 9312;
e) K. Liu, E. Kumacheva, Nat. Mater. 2017, 16, 883.
a) C. Hao, L. Xu, M. Sun, W. Ma, H. Kuang, C. Xu, Adv. Funct. Mater. 2018, 28, 1802372;
b) S.-Y. Zhang, M. D. Regulacio, M.-Y. Han, Chem. Soc. Rev. 2014, 43, 2301;
c) K. Thorkelsson, P. Bai, T. Xu, Nano Today 2015, 10, 48;
d) F. Mazuel, S. Mathieu, R. Di Corato, J.-C. Bacri, T. Meylheuc, T. Pellegrino, M. Reffay, C. Wilhelm, Small 2017, 13, 1701274.
a) M. P. Arciniegas, F. D. Stasio, H. Li, D. Altamura, L. De Trizio, M. Prato, A. Scarpellini, I. Moreels, R. Krahne, L. Manna, Adv. Funct. Mater. 2016, 26, 4535;
b) T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Science 2004, 304, 1787;
c) L. Lin, X. Peng, M. Wang, L. Scarabelli, Z. Mao, L. M. Liz-Marzán, M. F. Becker, Y. Zheng, ACS Nano 2016, 10, 9659;
d) M. B. Ross, J. C. Ku, V. M. Vaccarezza, G. C. Schatz, C. A. Mirkin, Nat. Nanotechnol. 2015, 10, 453.
a) X. Ye, J. Chen, M. Engel, J. A. Millan, W. Li, L. Qi, G. Xing, J. E. Collins, C. R. Kagan, J. Li, S. C. Glotzer, C. B. Murray, Nat. Chem. 2013, 5, 466;
b) F. Lu, K. G. Yager, Y. Zhang, H. Xin, O. Gang, Nat. Commun. 2015, 6, 6912.
a) D. Niculaes, A. Lak, G. C. Anyfantis, S. Marras, O. Laslett, S. K. Avugadda, M. Cassani, D. Serantes, O. Hovorka, R. Chantrell, T. Pellegrino, ACS Nano 2017, 11, 12121;
b) B. Bharti, A.-L. Fameau, M. Rubinstein, O. D. Velev, Nat. Mater. 2015, 14, 1104;
c) G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Král, R. Klajn, Science 2014, 345, 1149.
a) J. Kolosnjaj-Tabi, R. Di Corato, L. Lartigue, I. Marangon, P. Guardia, A. K. A. Silva, N. Luciani, O. Clément, P. Flaud, J. V. Singh, P. Decuzzi, T. Pellegrino, C. Wilhelm, F. Gazeau, ACS Nano 2014, 8, 4268;
b) J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, J. Cheon, Nat. Nanotechnol. 2011, 6, 418;
c) Y. Qiu, S. Tong, L. Zhang, Y. Sakurai, D. R. Myers, L. Hong, W. A. Lam, G. Bao, Nat. Commun. 2017, 8, 15594.
a) W. E. Mahmoud, L. M. Bronstein, F. Al-Hazmi, F. Al-Noaiser, A. A. Al-Ghamdi, Langmuir 2013, 29, 13095;
b) B. Gleich, J. Weizenecker, Nature 2005, 435, 1214.
a) M. E. Materia, P. Guardia, A. Sathya, M. Pernia Leal, R. Marotta, R. Di Corato, T. Pellegrino, Langmuir 2015, 31, 808;
b) D. F. Coral, P. Mendoza Zélis, M. Marciello, M. d. P. Morales, A. Craievich, F. H. Sánchez, M. B. Fernández van Raap, Langmuir 2016, 32, 1201;
c) S. K. Avugadda, M. E. Materia, R. Nigmatullin, D. Cabrera, R. Marotta, T. F. Cabada, E. Marcello, S. Nitti, E. J. Artés-Ibañez, P. Basnett, C. Wilhelm, F. J. Teran, I. Roy, T. Pellegrino, Chem. Mater. 2019, 31, 5450.
a) M. Rycenga, J. M. McLellan, Y. Xia, Adv. Mater. 2008, 20, 2416;
b) O. Rabin, Nat. Nanotechnol. 2012, 7, 419.
a) L. Wu, P.-O. Jubert, D. Berman, W. Imaino, A. Nelson, H. Zhu, S. Zhang, S. Sun, Nano Lett. 2014, 14, 3395;
b) K. Butter, P. H. H. Bomans, P. M. Frederik, G. J. Vroege, A. P. Philipse, Nat. Mater. 2003, 2, 88;
c) M. Wang, L. He, Y. Yin, Mater. Today 2013, 16, 110;
d) E. Wetterskog, C. Jonasson, D.-M. Smilgies, V. Schaller, C. Johansson, P. Svedlindh, ACS Nano 2018, 12, 1403.
B. Gao, G. Arya, A. R. Tao, Nat. Nanotechnol. 2012, 7, 433.
L. Balcells, I. Stanković, Z. Konstantinović, A. Alagh, V. Fuentes, L. López-Mir, J. Oró, N. Mestres, C. García, A. Pomar, B. Martínez, Nanoscale 2019, 11, 14194.
a) K. L. Gurunatha, S. Marvi, G. Arya, A. R. Tao, Nano Lett. 2015, 15, 7377;
b) D. Serantes, K. Simeonidis, M. Angelakeris, O. Chubykalo-Fesenko, M. Marciello, M. d. P. Morales, D. Baldomir, C. Martinez-Boubeta, J. Phys. Chem. C 2014, 118, 5927.
a) B. H. Kim, J. Yang, D. Lee, B. K. Choi, T. Hyeon, J. Park, Adv. Mater. 2018, 30, 1703316;
b) C. Zhang, K. L. Firestein, J. F. S. Fernando, D. Siriwardena, J. E. von Treifeldt, D. Golberg, Adv. Mater. 2020, 32, 1904094.
a) X. Ye, M. R. Jones, L. B. Frechette, Q. Chen, A. S. Powers, P. Ercius, G. Dunn, G. M. Rotskoff, S. C. Nguyen, V. P. Adiga, A. Zettl, E. Rabani, P. L. Geissler, A. P. Alivisatos, Science 2016, 354, 874;
b) K. L. Jungjohann, S. Bliznakov, P. W. Sutter, E. A. Stach, E. A. Sutter, Nano Lett. 2013, 13, 2964;
c) J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, A. P. Alivisatos, Science 2015, 349, 290;
d) N. D. Loh, S. Sen, M. Bosman, S. F. Tan, J. Zhong, C. A. Nijhuis, P. Král, P. Matsudaira, U. Mirsaidov, Nat. Chem. 2016, 9, 77.
a) E. Sutter, P. Sutter, A. V. Tkachenko, R. Krahne, J. de Graaf, M. Arciniegas, L. Manna, Nat. Commun. 2016, 7, 11213;
b) F. Novotný, P. Wandrol, J. Proška, M. Šlouf, Microsc. Microanal. 2014, 20, 385.
N. Ahmad, D. Keller, M. D. Rossell, R. Erni, Chimia 2018, 72, 727.
A. Sathya, P. Guardia, R. Brescia, N. Silvestri, G. Pugliese, S. Nitti, L. Manna, T. Pellegrino, Chem. Mater. 2016, 28, 1769.
a) T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S. Keller, J. Rädler, G. Natile, W. J. Parak, Nano Lett. 2004, 4, 703;
b) R. Di Corato, A. Quarta, P. Piacenza, A. Ragusa, A. Figuerola, R. Buonsanti, R. Cingolani, L. Manna, T. Pellegrino, J. Mater. Chem. 2008, 18, 1991.
a) E. Sutter, K. Jungjohann, S. Bliznakov, A. Courty, E. Maisonhaute, S. Tenney, P. Sutter, Nat. Commun. 2014, 5, 4946;
b) A. Hutzler, B. Fritsch, M. P. M. Jank, R. Branscheid, R. C. Martens, E. Spiecker, M. März, Adv. Mater. Interfaces 2019, 6, 1901027.
a) E. Sutter, B. Zhang, S. Sutter, P. Sutter, Nanoscale 2019, 11, 34;
b) P. Sutter, B. Zhang, E. Sutter, Nanoscale 2018, 10, 12674.
a) L. Lartigue, D. Alloyeau, J. Kolosnjaj-Tabi, Y. Javed, P. Guardia, A. Riedinger, C. Péchoux, T. Pellegrino, C. Wilhelm, F. Gazeau, ACS Nano 2013, 7, 3939;
b) J. Volatron, J. Kolosnjaj-Tabi, Y. Javed, Q. L. Vuong, Y. Gossuin, S. Neveu, N. Luciani, M. Hémadi, F. Carn, D. Alloyeau, F. Gazeau, Sci. Rep. 2017, 7, 40075.
Y. Liu, X.-M. Lin, Y. Sun, T. Rajh, J. Am. Chem. Soc. 2013, 135, 3764.
K. Okada, A. Satoh, Mol. Phys. 2018, 116, 2300.
R. F. Egerton, Micron 2019, 119, 72.
Y. Liu, L. Shen, Langmuir 2008, 24, 11625.
N. de Jonge, L. Houben, R. E. Dunin-Borkowski, F. M. Ross, Nat. Rev. Mater. 2019, 4, 61.

Auteurs

Milena P Arciniegas (MP)

Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.

Andrea Castelli (A)

Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.

Rosaria Brescia (R)

Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.

David Serantes (D)

Applied Physics Department and Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.

Sergiu Ruta (S)

Department of Physics, University of York, York, YO10 5DD, UK.

Ondrej Hovorka (O)

Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO16 7QF, UK.

Akira Satoh (A)

Faculty of System Science and Technology, Akita Prefecture University, Yurihonjo, 015-0055, Japan.

Roy Chantrell (R)

Department of Physics, University of York, York, YO10 5DD, UK.

Teresa Pellegrino (T)

Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.

Articles similaires

Animals Dogs Dog Diseases Autophagy Immunohistochemistry
Tumor Microenvironment Nanoparticles Immunotherapy Cellular Senescence Animals
Cobalt Azo Compounds Ferric Compounds Polyesters Photolysis
Neoplastic Stem Cells Animals Humans Aldehyde Dehydrogenase Tretinoin

Classifications MeSH