Tumor ablation plus co-administration of CpG and saponin adjuvants affects IL-1 production and multifunctional T cell numbers in tumor draining lymph nodes.


Journal

Journal for immunotherapy of cancer
ISSN: 2051-1426
Titre abrégé: J Immunother Cancer
Pays: England
ID NLM: 101620585

Informations de publication

Date de publication:
05 2020
Historique:
accepted: 23 04 2020
entrez: 29 5 2020
pubmed: 29 5 2020
medline: 18 3 2021
Statut: ppublish

Résumé

Tumor ablation techniques, like cryoablation, are successfully used in the clinic to treat tumors. The tumor debris remaining in situ after ablation is a major antigen depot, including neoantigens, which are presented by dendritic cells (DCs) in the draining lymph nodes to induce tumor-specific CD8 Here, we show that simultaneous administration of cytidyl guanosyl (CpG) with saponin-based adjuvants following cryoablation affects multifunctional T-cell numbers and interleukin (IL)-1 induced polymorphonuclear neutrophil recruitment in the tumor draining lymph nodes, relative to either adjuvant alone. The combination of CpG and saponin-based adjuvants induces potent DC maturation (mainly CpG-mediated), antigen cross-presentation (mainly saponin-based adjuvant mediated), while excretion of IL-1β by DCs in vitro depends on the presence of both adjuvants. Most strikingly, CpG/saponin-based adjuvant exposed DCs potentiate antigen-specific T-cell proliferation resulting in multipotent T cells with increased capacity to produce interferon (IFN)γ, IL-2 and tumor necrosis factor-α in vitro. Also in vivo the CpG/saponin-based adjuvant combination plus cryoablation increased the numbers of tumor-specific CD8 Collectively, these data indicate that co-injection of CpG with saponin-based adjuvants after cryoablation induces an increased amount of tumor-specific multifunctional T cells. The combination of saponin-based adjuvants with toll-like receptor 9 adjuvant CpG in a cryoablative setting therefore represents a promising in situ vaccination strategy.

Sections du résumé

BACKGROUND
Tumor ablation techniques, like cryoablation, are successfully used in the clinic to treat tumors. The tumor debris remaining in situ after ablation is a major antigen depot, including neoantigens, which are presented by dendritic cells (DCs) in the draining lymph nodes to induce tumor-specific CD8
METHODS AND RESULTS
Here, we show that simultaneous administration of cytidyl guanosyl (CpG) with saponin-based adjuvants following cryoablation affects multifunctional T-cell numbers and interleukin (IL)-1 induced polymorphonuclear neutrophil recruitment in the tumor draining lymph nodes, relative to either adjuvant alone. The combination of CpG and saponin-based adjuvants induces potent DC maturation (mainly CpG-mediated), antigen cross-presentation (mainly saponin-based adjuvant mediated), while excretion of IL-1β by DCs in vitro depends on the presence of both adjuvants. Most strikingly, CpG/saponin-based adjuvant exposed DCs potentiate antigen-specific T-cell proliferation resulting in multipotent T cells with increased capacity to produce interferon (IFN)γ, IL-2 and tumor necrosis factor-α in vitro. Also in vivo the CpG/saponin-based adjuvant combination plus cryoablation increased the numbers of tumor-specific CD8
CONCLUSIONS
Collectively, these data indicate that co-injection of CpG with saponin-based adjuvants after cryoablation induces an increased amount of tumor-specific multifunctional T cells. The combination of saponin-based adjuvants with toll-like receptor 9 adjuvant CpG in a cryoablative setting therefore represents a promising in situ vaccination strategy.

Identifiants

pubmed: 32461350
pii: jitc-2020-000649
doi: 10.1136/jitc-2020-000649
pmc: PMC7254152
pii:
doi:

Substances chimiques

Adjuvants, Immunologic 0
Interleukin-1 0
Oligodeoxyribonucleotides 0
Saponins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Déclaration de conflit d'intérêts

Competing interests: None declared.

Références

Nat Commun. 2018 Aug 9;9(1):3185
pubmed: 30093707
J Clin Invest. 2004 Mar;113(5):774-83
pubmed: 14991076
J Clin Oncol. 2013 Jul 1;31(19):2413-20
pubmed: 23715572
PLoS One. 2009 Dec 18;4(12):e8368
pubmed: 20020049
Br J Cancer. 2006 Oct 9;95(7):896-905
pubmed: 16953240
Science. 2008 Nov 14;322(5904):1097-100
pubmed: 19008445
Nat Commun. 2016 Nov 07;7:13324
pubmed: 27819292
J Immunol. 2014 Apr 1;192(7):3259-68
pubmed: 24610009
Immunol Rev. 1980;51:279-314
pubmed: 7000674
Blood. 2007 May 1;109(9):3812-9
pubmed: 17255361
Science. 2009 Jul 10;325(5937):213-7
pubmed: 19498108
Nature. 1984 Mar 29-Apr 4;308(5958):457-60
pubmed: 6709052
Cancer Res. 2004 Jun 1;64(11):4024-9
pubmed: 15173017
Immunity. 2004 Aug;21(2):155-65
pubmed: 15308097
Clin Cancer Res. 2004 Apr 15;10(8):2879-90
pubmed: 15102697
Int Immunol. 2007 Jul;19(7):813-24
pubmed: 17606980
J Biol Chem. 1995 Dec 8;270(49):29525-31
pubmed: 7493994
J Immunol Methods. 1999 Feb 1;223(1):77-92
pubmed: 10037236
J Immunol. 2009 Feb 1;182(3):1253-9
pubmed: 19155470
J Immunol. 2002 Jul 1;169(1):108-16
pubmed: 12077235
J Immunol. 2001 May 1;166(9):5327-30
pubmed: 11313367
Nat Immunol. 2008 May;9(5):551-7
pubmed: 18376401
Immunol Today. 1990 Jun;11(6):211-6
pubmed: 2162180
J Thorac Oncol. 2015 Oct;10(10):1458-67
pubmed: 26309191
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7119-24
pubmed: 19359475
Eur J Immunol. 2013 Mar;43(3):595-605
pubmed: 23303646
J Immunol. 2015 Mar 1;194(5):2199-207
pubmed: 25646304
Immunity. 2006 Oct;25(4):607-17
pubmed: 17027300
Cancer Res. 2006 Jul 15;66(14):7285-92
pubmed: 16849578
Biomed Res Int. 2013;2013:636847
pubmed: 23586050
J Immunol. 2003 Dec 1;171(11):5940-7
pubmed: 14634105
Vaccine. 2009 Jul 16;27(33):4388-401
pubmed: 19450632
Immunol Cell Biol. 2009 Jul;87(5):371-6
pubmed: 19381160
Clin Cancer Res. 2009 Mar 15;15(6):2166-73
pubmed: 19276262
Front Immunol. 2018 Dec 13;9:2874
pubmed: 30619259
Expert Rev Vaccines. 2011 Apr;10(4):499-511
pubmed: 21506647
J Immunol. 2006 Jul 1;177(1):372-82
pubmed: 16785533
Immunol Rev. 2009 May;229(1):101-13
pubmed: 19426217
Cancer Res. 2008 Jul 1;68(13):5390-6
pubmed: 18593941
J Immunol. 1995 May 15;154(10):5071-9
pubmed: 7730613
Vaccine. 2012 Jan 17;30(4):737-44
pubmed: 22138178
J Immunol. 2006 Jul 15;177(2):983-90
pubmed: 16818754
Vaccine. 2014 Nov 12;32(48):6377-89
pubmed: 24975812
Int J Cancer. 2013 Feb 15;132(4):843-53
pubmed: 22752934
Cancer Res. 2011 Oct 15;71(20):6428-37
pubmed: 21788345
Cell. 2000 Jan 7;100(1):57-70
pubmed: 10647931
Cancer Immunol Immunother. 2016 Jan;65(1):25-36
pubmed: 26581199
Expert Rev Vaccines. 2007 Oct;6(5):761-72
pubmed: 17931156
Vaccine. 1995 Oct;13(14):1375-82
pubmed: 8585296
Vaccine. 1997 Dec;15(17-18):1820-6
pubmed: 9413088
Immunol Cell Biol. 2012 May;90(5):540-52
pubmed: 21894173
Vaccine. 2009 Dec 9;27(52):7367-76
pubmed: 19781678
BJU Int. 2005 Jun;95(9):1187-91
pubmed: 15892798
Curr Opin Immunol. 2012 Apr;24(2):207-12
pubmed: 22236695
Cryobiology. 2009 Feb;58(1):1-11
pubmed: 19007768
J Vasc Interv Radiol. 2010 Aug;21(8 Suppl):S187-91
pubmed: 20656228

Auteurs

Tonke K Raaijmakers (TK)

Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.
Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.

Renske J E van den Bijgaart (RJE)

Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.

Martijn H den Brok (MH)

Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.
Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.

Melissa Wassink (M)

Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.

Annemarie de Graaf (A)

Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.

Jori A Wagenaars (JA)

Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.

Stefan Nierkens (S)

Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.
Center for Translational Immunology, Utrecht University, Utrecht, The Netherlands.

Marleen Ansems (M)

Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.

Gert Jan Scheffer (GJ)

Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.

Gosse J Adema (GJ)

Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands gosse.adema@radboudumc.nl.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH