hnRNP H/F drive RNA G-quadruplex-mediated translation linked to genomic instability and therapy resistance in glioblastoma.
Brain Neoplasms
/ physiopathology
Cell Line, Tumor
DEAD-box RNA Helicases
/ metabolism
G-Quadruplexes
Gene Expression Regulation
/ physiology
Genomic Instability
/ physiology
Glioblastoma
/ physiopathology
Heterogeneous-Nuclear Ribonucleoprotein Group F-H
/ metabolism
Humans
RNA, Messenger
/ metabolism
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
27 05 2020
27 05 2020
Historique:
received:
11
04
2019
accepted:
14
04
2020
entrez:
29
5
2020
pubmed:
29
5
2020
medline:
18
8
2020
Statut:
epublish
Résumé
RNA G-quadruplexes (RG4s) are four-stranded structures known to control mRNA translation of cancer relevant genes. RG4 formation is pervasive in vitro but not in cellulo, indicating the existence of poorly characterized molecular machinery that remodels RG4s and maintains them unfolded. Here, we performed a quantitative proteomic screen to identify cytosolic proteins that interact with a canonical RG4 in its folded and unfolded conformation. Our results identified hnRNP H/F as important components of the cytoplasmic machinery modulating the structural integrity of RG4s, revealed their function in RG4-mediated translation and uncovered the underlying molecular mechanism impacting the cellular stress response linked to the outcome of glioblastoma.
Identifiants
pubmed: 32461552
doi: 10.1038/s41467-020-16168-x
pii: 10.1038/s41467-020-16168-x
pmc: PMC7253433
doi:
Substances chimiques
Heterogeneous-Nuclear Ribonucleoprotein Group F-H
0
RNA, Messenger
0
DHX36 protein, human
EC 3.6.1.-
DEAD-box RNA Helicases
EC 3.6.4.13
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2661Commentaires et corrections
Type : ErratumIn
Références
Wang, Z. L. et al. Comprehensive genomic characterization of RNA-binding proteins across human cancers. Cell Rep. 22, 286–298 (2018).
pubmed: 29298429
doi: 10.1016/j.celrep.2017.12.035
Pereira, B., Billaud, M. & Almeida, R. RNA-binding proteins in cancer: old players and new actors. Trends Cancer 3, 506–528 (2017).
pubmed: 28718405
doi: 10.1016/j.trecan.2017.05.003
Cammas, A. & Millevoi, S. RNA G-quadruplexes: emerging mechanisms in disease. Nucleic Acids Res. 45, 1584–1595 (2017).
pubmed: 28013268
Huppert, J. L., Bugaut, A., Kumari, S. & Balasubramanian, S. G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res. 36, 6260–6268 (2008).
pubmed: 18832370
pmcid: 2577360
doi: 10.1093/nar/gkn511
von Hacht, A. et al. Identification and characterization of RNA guanine-quadruplex binding proteins. Nucleic Acids Res. 42, 6630–6644 (2014).
doi: 10.1093/nar/gku290
Herdy, B. et al. Analysis of NRAS RNA G-quadruplex binding proteins reveals DDX3X as a novel interactor of cellular G-quadruplex containing transcripts. Nucleic Acids Res. 46, 11592–11604 (2018).
pubmed: 30256975
pmcid: 6265444
doi: 10.1093/nar/gky861
McRae, E. K. S. et al. Human DDX21 binds and unwinds RNA guanine quadruplexes. Nucleic Acids Res. 45, 6656–6668 (2017).
pubmed: 28472472
pmcid: 5499804
doi: 10.1093/nar/gkx380
Serikawa, T. et al. Comprehensive identification of proteins binding to RNA G-quadruplex motifs in the 5′ UTR of tumor-associated mRNAs. Biochimie 144, 169–184 (2018).
pubmed: 29129743
doi: 10.1016/j.biochi.2017.11.003
Haeusler, A. R. et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507, 195–200 (2014).
pubmed: 24598541
pmcid: 4046618
doi: 10.1038/nature13124
Guo, J. U. & Bartel, D. P. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353, 1382–1390 (2016).
doi: 10.1126/science.aad5755
Kwok, C. K., Marsico, G., Sahakyan, A. B., Chambers, V. S. & Balasubramanian, S. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods 13, 841–848 (2016).
pubmed: 27571552
doi: 10.1038/nmeth.3965
Endoh, T. et al. Real-time monitoring of G-quadruplex formation during transcription. Anal. Chem. 88, 1984–1989 (2016).
pubmed: 26810457
doi: 10.1021/acs.analchem.5b04396
Yang, S. Y. et al. Transcriptome-wide identification of transient RNA G-quadruplexes in human cells. Nat. Commun. 9, 4730 (2018).
pubmed: 30413703
pmcid: 6226477
doi: 10.1038/s41467-018-07224-8
Samatanga, B., Dominguez, C., Jelesarov, I. & Allain, F. H. The high kinetic stability of a G-quadruplex limits hnRNP F qRRM3 binding to G-tract RNA. Nucleic Acids Res. 41, 2505–2516 (2013).
pubmed: 23275549
doi: 10.1093/nar/gks1289
Song, J., Perreault, J. P., Topisirovic, I. & Richard, S. RNA G-quadruplexes and their potential regulatory roles in translation. Translation 4, e1244031 (2016).
pubmed: 28090421
pmcid: 5173311
doi: 10.1080/21690731.2016.1244031
Wong, J. W. & Cagney, G. An overview of label-free quantitation methods in proteomics by mass spectrometry. Methods Mol. Biol. 604, 273–283 (2010).
pubmed: 20013377
doi: 10.1007/978-1-60761-444-9_18
Kumari, S., Bugaut, A., Huppert, J. L. & Balasubramanian, S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat. Chem. Biol. 3, 218–221 (2007).
pubmed: 17322877
pmcid: 2206252
doi: 10.1038/nchembio864
Urdaneta, E. C. et al. Purification of cross-linked RNA-protein complexes by phenol-toluol extraction. Nat. Commun. 10, 990 (2019).
pubmed: 30824702
pmcid: 6397201
doi: 10.1038/s41467-019-08942-3
Trendel, J. et al. The human RNA-binding proteome and its dynamics during translational arrest. Cell 176, 391–403. e319 (2019).
pubmed: 30528433
doi: 10.1016/j.cell.2018.11.004
Perez-Perri, J. I. et al. Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture. Nat. Commun. 9, 4408 (2018).
pubmed: 30352994
pmcid: 6199288
doi: 10.1038/s41467-018-06557-8
Queiroz, R. M. L. et al. Comprehensive identification of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS). Nat. Biotechnol. 37, 169–178 (2019).
pubmed: 30607034
pmcid: 6591131
doi: 10.1038/s41587-018-0001-2
Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet 15, 829–845 (2014).
pubmed: 25365966
doi: 10.1038/nrg3813
Lewis, C. J., Pan, T. & Kalsotra, A. RNA modifications and structures cooperate to guide RNA-protein interactions. Nat. Rev. Mol. Cell Biol. 18, 202–210 (2017).
pubmed: 28144031
pmcid: 5542016
doi: 10.1038/nrm.2016.163
Murat, P. et al. RNA G-quadruplexes at upstream open reading frames cause DHX36- and DHX9-dependent translation of human mRNAs. Genome Biol. 19, 229 (2018).
pubmed: 30591072
pmcid: 6307142
doi: 10.1186/s13059-018-1602-2
Sauer, M. et al. DHX36 prevents the accumulation of translationally inactive mRNAs with G4-structures in untranslated regions. Nat. Commun. 10, 2421 (2019).
pubmed: 31160600
pmcid: 6547686
doi: 10.1038/s41467-019-10432-5
Hong, S. et al. LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs. Elife 6, e25237 (2017).
pubmed: 28650797
pmcid: 5484620
doi: 10.7554/eLife.25237
Nicastro, G. et al. Noncanonical G recognition mediates KSRP regulation of let-7 biogenesis. Nat. Struct. Mol. Biol. 19, 1282–1286 (2012).
pubmed: 23142982
pmcid: 3605776
doi: 10.1038/nsmb.2427
Lefave, C. V. et al. Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas. EMBO J. 30, 4084–4097 (2011).
pubmed: 21915099
pmcid: 3209773
doi: 10.1038/emboj.2011.259
Decorsiere, A., Cayrel, A., Vagner, S. & Millevoi, S. Essential role for the interaction between hnRNP H/F and a G quadruplex in maintaining p53 pre-mRNA 3′-end processing and function during DNA damage. Genes Dev. 25, 220–225 (2011).
pubmed: 21289067
pmcid: 3034896
doi: 10.1101/gad.607011
Yamazaki, T. et al. TCF3 alternative splicing controlled by hnRNP H/F regulates E-cadherin expression and hESC pluripotency. Genes Dev. 32, 1161–1174 (2018).
pubmed: 30115631
pmcid: 6120717
doi: 10.1101/gad.316984.118
Mauger, D. M., Lin, C. & Garcia-Blanco, M. A. hnRNP H and hnRNP F complex with Fox2 to silence fibroblast growth factor receptor 2 exon IIIc. Mol. Cell Biol. 28, 5403–5419 (2008).
pubmed: 18573884
pmcid: 2519734
doi: 10.1128/MCB.00739-08
Huang, H., Zhang, J., Harvey, S. E., Hu, X. & Cheng, C. RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF. Genes Dev. 31, 2296–2309 (2017).
pubmed: 29269483
pmcid: 5769772
doi: 10.1101/gad.305862.117
Conlon, E. G. et al. The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS patient brains. Elife 5, e17820 (2016).
pubmed: 27623008
pmcid: 5050020
doi: 10.7554/eLife.17820
Biffi, G., Di Antonio, M., Tannahill, D. & Balasubramanian, S. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat. Chem. 6, 75–80 (2014).
pubmed: 24345950
doi: 10.1038/nchem.1805
Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 (2013).
pubmed: 23422559
pmcid: 3622242
doi: 10.1038/nchem.1548
Kechavarzi, B. & Janga, S. C. Dissecting the expression landscape of RNA-binding proteins in human cancers. Genome Biol. 15, R14 (2014).
pubmed: 24410894
pmcid: 4053825
doi: 10.1186/gb-2014-15-1-r14
Wahba, A., Rath, B. H., Bisht, K., Camphausen, K. & Tofilon, P. J. Polysome profiling links translational control to the radioresponse of glioblastoma stem-like cells. Cancer Res. 76, 3078–3087 (2016).
pubmed: 27005284
pmcid: 4873349
doi: 10.1158/0008-5472.CAN-15-3050
Lu, X., de la Pena, L., Barker, C., Camphausen, K. & Tofilon, P. J. Radiation-induced changes in gene expression involve recruitment of existing messenger RNAs to and away from polysomes. Cancer Res. 66, 1052–1061 (2006).
pubmed: 16424041
doi: 10.1158/0008-5472.CAN-05-3459
Honore, B., Baandrup, U. & Vorum, H. Heterogeneous nuclear ribonucleoproteins F and H/H′ show differential expression in normal and selected cancer tissues. Exp. Cell Res. 294, 199–209 (2004).
pubmed: 14980514
doi: 10.1016/j.yexcr.2003.11.011
Kikin, O., D’Antonio, L. & Bagga, P. S. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 34, W676–W682 (2006).
pubmed: 16845096
pmcid: 1538864
doi: 10.1093/nar/gkl253
Huelga, S. C. et al. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep. 1, 167–178 (2012).
pubmed: 22574288
pmcid: 3345519
doi: 10.1016/j.celrep.2012.02.001
Braun, S. et al. Decoding a cancer-relevant splicing decision in the RON proto-oncogene using high-throughput mutagenesis. Nat. Commun. 9, 3315 (2018).
pubmed: 30120239
pmcid: 6098099
doi: 10.1038/s41467-018-05748-7
Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).
doi: 10.1038/nature05236
pubmed: 17051156
Plate, K. H., Breier, G., Weich, H. A. & Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845–848 (1992).
pubmed: 1279432
doi: 10.1038/359845a0
Cammas, A. et al. Stabilization of the G-quadruplex at the VEGF IRES represses cap-independent translation. RNA Biol. 12, 320–329 (2015).
pubmed: 25826664
pmcid: 4615567
doi: 10.1080/15476286.2015.1017236
Newman, M. et al. The G-quadruplex-specific RNA helicase DHX36 regulates p53 pre-mRNA 3′-end processing following UV-induced DNA damage. J. Mol. Biol. 429, 3121–3131 (2017).
pubmed: 27940037
doi: 10.1016/j.jmb.2016.11.033
Creacy, S. D. et al. G4 resolvase 1 binds both DNA and RNA tetramolecular quadruplex with high affinity and is the major source of tetramolecular quadruplex G4-DNA and G4-RNA resolving activity in HeLa cell lysates. J. Biol. Chem. 283, 34626–34634 (2008).
pubmed: 18842585
pmcid: 2596407
doi: 10.1074/jbc.M806277200
Lattmann, S., Stadler, M. B., Vaughn, J. P., Akman, S. A. & Nagamine, Y. The DEAH-box RNA helicase RHAU binds an intramolecular RNA G-quadruplex in TERC and associates with telomerase holoenzyme. Nucleic Acids Res. 39, 9390–9404 (2011).
pubmed: 21846770
pmcid: 3241650
doi: 10.1093/nar/gkr630
Thandapani, P. et al. Aven recognition of RNA G-quadruplexes regulates translation of the mixed lineage leukemia protooncogenes. Elife 4, e06234 (2015).
Brannan, K. W. et al. SONAR discovers RNA-binding proteins from analysis of large-scale protein-protein interactomes. Mol. Cell 64, 282–293 (2016).
pubmed: 27720645
pmcid: 5074894
doi: 10.1016/j.molcel.2016.09.003
Wolfe, A. L. et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 513, 65–70 (2014).
pubmed: 25079319
pmcid: 4492470
doi: 10.1038/nature13485
Bonner, W. M. et al. GammaH2AX and cancer. Nat. Rev. Cancer 8, 957–967 (2008).
pubmed: 19005492
pmcid: 3094856
doi: 10.1038/nrc2523
Cohn, M. A. et al. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol. Cell 28, 786–797 (2007).
pubmed: 18082604
doi: 10.1016/j.molcel.2007.09.031
Nijman, S. M. et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell 17, 331–339 (2005).
pubmed: 15694335
doi: 10.1016/j.molcel.2005.01.008
Lee, J. K. et al. USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance. Neuro Oncol. 18, 37–47 (2016).
pubmed: 26032834
doi: 10.1093/neuonc/nov091
Sourisseau, T. et al. Translational regulation of the mRNA encoding the ubiquitin peptidase USP1 involved in the DNA damage response as a determinant of Cisplatin resistance. Cell Cycle 15, 295–302 (2016).
pubmed: 26825230
pmcid: 4825832
doi: 10.1080/15384101.2015.1120918
Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016).
pubmed: 27157931
doi: 10.1007/s00401-016-1545-1
Weldon, C. et al. Identification of G-quadruplexes in long functional RNAs using 7-deazaguanine RNA. Nat. Chem. Biol. 13, 18–21 (2016).
pubmed: 27820800
pmcid: 5164935
doi: 10.1038/nchembio.2228
Rogers, G. W. Jr., Richter, N. J., Lima, W. F. & Merrick, W. C. Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. J. Biol. Chem. 276, 30914–30922 (2001).
pubmed: 11418588
doi: 10.1074/jbc.M100157200
Dominguez, C. & Allain, F. H. NMR structure of the three quasi RNA recognition motifs (qRRMs) of human hnRNP F and interaction studies with Bcl-x G-tract RNA: a novel mode of RNA recognition. Nucleic Acids Res. 34, 3634–3645 (2006).
pubmed: 16885237
pmcid: 1540728
doi: 10.1093/nar/gkl488
Dominguez, C., Fisette, J. F., Chabot, B. & Allain, F. H. Structural basis of G-tract recognition and encaging by hnRNP F quasi-RRMs. Nat. Struct. Mol. Biol. 17, 853–861 (2010).
pubmed: 20526337
doi: 10.1038/nsmb.1814
Tamayo, J. V., Teramoto, T., Chatterjee, S., Hall, T. M. T. & Gavis, E. R. The Drosophila hnRNP F/H homolog glorund uses two distinct RNA-binding modes to diversify target recognition. Cell Rep. 19, 150–161 (2017).
pubmed: 28380354
pmcid: 5392723
doi: 10.1016/j.celrep.2017.03.022
Li, X. et al. A splicing switch from ketohexokinase-C to ketohexokinase-A drives hepatocellular carcinoma formation. Nat. Cell Biol. 18, 561–571 (2016).
pubmed: 27088854
pmcid: 4888794
doi: 10.1038/ncb3338
Wang, Y. et al. G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma. Nat. Commun. 10, 943 (2019).
pubmed: 30808951
pmcid: 6391399
doi: 10.1038/s41467-019-08905-8
Ludwig, K. R., Schroll, M. M. & Hummon, A. B. Comparison of in-solution, FASP, and S-Trap based digestion methods for bottom-up proteomic studies. J. Proteome Res. 17, 2480–2490 (2018).
pubmed: 29754492
doi: 10.1021/acs.jproteome.8b00235
Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteom. 13, 2513–2526 (2014).
doi: 10.1074/mcp.M113.031591
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).
doi: 10.1038/nmeth.3901
pubmed: 27348712
Leventoux N, Augustus M, Azar S, et al. Transformation Foci in IDH1-mutated Gliomas Show STAT3 Phosphorylation and Downregulate the Metabolic Enzyme ETNPPL, a Negative Regulator of Glioma Growth. Sci Rep. 2020;10:5504. Published 2020 Mar 26. https://doi.org/10.1038/s41598-020-62145-1 .
Louis, D. N. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109 (2007).
pubmed: 17618441
pmcid: 1929165
doi: 10.1007/s00401-007-0243-4