Phase and context shape the function of composite oncogenic mutations.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
06 2020
Historique:
received: 07 09 2019
accepted: 06 04 2020
pubmed: 29 5 2020
medline: 10 7 2020
entrez: 29 5 2020
Statut: ppublish

Résumé

Cancers develop as a result of driver mutations

Identifiants

pubmed: 32461694
doi: 10.1038/s41586-020-2315-8
pii: 10.1038/s41586-020-2315-8
pmc: PMC7294994
mid: NIHMS1582596
doi:

Substances chimiques

TERT protein, human EC 2.7.7.49
Telomerase EC 2.7.7.49

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

100-103

Subventions

Organisme : NCI NIH HHS
ID : R01 CA207244
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA087497
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA204749
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA160001
Pays : United States
Organisme : NIH HHS
ID : U54 OD020355
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA245069
Pays : United States
Organisme : NCI NIH HHS
ID : K08 CA245192
Pays : United States

Références

Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).
pubmed: 23539594 pmcid: 3749880
Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).
pubmed: 23540688
Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).
pubmed: 1143315
Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).
pubmed: 959840
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
doi: 10.1016/j.cell.2011.02.013 pubmed: 21376230
Hyman, D. M., Taylor, B. S. & Baselga, J. Implementing genome-driven oncology. Cell 168, 584–599 (2017).
pubmed: 28187282 pmcid: 5463457
Knudson, A. G., Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).
pubmed: 5279523 pmcid: 389051
Bielski, C. M. et al. Widespread selection for oncogenic mutant allele imbalance in cancer. Cancer Cell 34, 852–862.e4 (2018).
pubmed: 30393068 pmcid: 6234065
Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).
pubmed: 23770567 pmcid: 3919509
Jin, G. et al. Disruption of wild-type IDH1 suppresses d-2-hydroxyglutarate production in IDH1-mutated gliomas. Cancer Res. 73, 496–501 (2013).
pubmed: 23204232
Mueller, S. et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature 554, 62–68 (2018).
pubmed: 29364867 pmcid: 6097607
Chang, M. T. et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat. Biotechnol. 34, 155–163 (2016).
pubmed: 26619011
Chang, M. T. et al. Accelerating discovery of functional mutant alleles in cancer. Cancer Discov. 8, 174–183 (2018).
pubmed: 29247016
Intlekofer, A. M. et al. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature 559, 125–129 (2018).
pubmed: 29950729 pmcid: 6121718
Hidaka, N. et al. Most T790M mutations are present on the same EGFR allele as activating mutations in patients with non-small cell lung cancer. Lung Cancer 108, 75–82 (2017).
pubmed: 28625653
Gainor, J. F. et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 6, 1118–1133 (2016).
pubmed: 27432227 pmcid: 5050111
Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).
pubmed: 15728811
Vasan, N. et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science 366, 714–723 (2019).
pubmed: 31699932 pmcid: 7173400
Chen, Z. et al. EGFR somatic doublets in lung cancer are frequent and generally arise from a pair of driver mutations uncommonly seen as singlet mutations: one-third of doublets occur at five pairs of amino acids. Oncogene 27, 4336–4343 (2008).
pubmed: 18372921
Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013).
pubmed: 23348506 pmcid: 4423787
Bell, R. J. A. et al. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 348, 1036–1039 (2015).
pubmed: 25977370 pmcid: 4456397
Berenjeno, I. M. et al. Oncogenic PIK3CA induces centrosome amplification and tolerance to genome doubling. Nat. Commun. 8, 1773 (2017).
pubmed: 29170395 pmcid: 5701070
Kinross, K. M. et al. An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice. J. Clin. Invest. 122, 553–557 (2012).
pubmed: 22214849 pmcid: 3266789
Madsen, R. R. et al. Oncogenic PIK3CA promotes cellular stemness in an allele dose-dependent manner. Proc. Natl Acad. Sci. USA 116, 8380–8389 (2019).
pubmed: 30948643 pmcid: 6486754
Hyman, D. M. et al. Precision medicine at Memorial Sloan Kettering Cancer Center: clinical next-generation sequencing enabling next-generation targeted therapy trials. Drug Discov. Today 20, 1422–1428 (2015).
pubmed: 26320725 pmcid: 4940024
Cheng, D. T. et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17, 251–264 (2015).
pubmed: 25801821 pmcid: 5808190
Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).
pubmed: 28481359 pmcid: 5461196
Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. 1, 1–16 (2017).
Campbell, B. B. et al. Comprehensive analysis of hypermutation in human cancer. Cell 171, 1042–1056.e10 (2017).
pubmed: 29056344 pmcid: 5849393
Niu, B. et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics 30, 1015–1016 (2014).
pubmed: 24371154
Middha, S. et al. Reliable pan-cancer microsatellite instability assessment by using targeted next-generation sequencing data. JCO Precis. Oncol. 1, 1–17 (2017).
Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3, 246–259 (2013).
pubmed: 23318258 pmcid: 3588146
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
Smedley, D. et al. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. 43, W589–W598 (2015).
pubmed: 25897122 pmcid: 4489294
Forbes, S. A. et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015).
pubmed: 25355519
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).
pubmed: 23945592 pmcid: 3776390
Alexandrov, L. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).
pubmed: 32025018 pmcid: 7054213
Pich, O. et al. Somatic and germline mutation periodicity follow the orientation of the DNA minor groove around nucleosomes. Cell 175, 1074–1087.e18 (2018).
pubmed: 30388444
Sabarinathan, R., Mularoni, L., Deu-Pons, J., Gonzalez-Perez, A. & López-Bigas, N. Nucleotide excision repair is impaired by binding of transcription factors to DNA. Nature 532, 264–267 (2016).
pubmed: 27075101
Buisson, R. et al. Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features. Science 364, eaaw2872 (2019).
pubmed: 31249028 pmcid: 6731024
Hess, J. M. et al. Passenger hotspot mutations in cancer. Cancer Cell 36, 288–301.e14 (2019).
pubmed: 31526759 pmcid: 7371346
Needleman, S. B. & Wunsch, C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970).
pubmed: 5420325
McGranahan, N. et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci. Transl. Med. 7, 283ra54 (2015).
pubmed: 25877892 pmcid: 4636056
Dimitrova, N. et al. Stromal expression of miR-143/145 promotes neoangiogenesis in lung cancer development. Cancer Discov. 6, 188–201 (2016).
pubmed: 26586766
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049
Bult, C. J., Blake, J. A., Smith, C. L., Kadin, J. A. & Richardson, J. E. Mouse genome database (MGD) 2019. Nucleic Acids Res. 47, D801–D806 (2019).
pubmed: 30407599
Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 (2018).
pubmed: 29140473
Tan, G. & Lenhard, B. TFBSTools: an R/bioconductor package for transcription factor binding site analysis. Bioinformatics 32, 1555–1556 (2016).
pubmed: 26794315 pmcid: 4866524
Touzet, H. & Varré, J.-S. Efficient and accurate P-value computation for position weight matrices. Algorithms Mol. Biol. 2, 15 (2007).
pubmed: 18072973 pmcid: 2238751
Supek, F. & Lehner, B. Clustered mutation signatures reveal that error-prone DNA repair targets mutations to active genes. Cell 170, 534–547.e23 (2017).
pubmed: 28753428
Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).
pubmed: 22608084 pmcid: 3414841

Auteurs

Alexander N Gorelick (AN)

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Francisco J Sánchez-Rivera (FJ)

Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Yanyan Cai (Y)

Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Craig M Bielski (CM)

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Evan Biederstedt (E)

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Philip Jonsson (P)

Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Allison L Richards (AL)

Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Neil Vasan (N)

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Alexander V Penson (AV)

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Noah D Friedman (ND)

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Yu-Jui Ho (YJ)

Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Timour Baslan (T)

Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Chaitanya Bandlamudi (C)

Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Maurizio Scaltriti (M)

Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Nikolaus Schultz (N)

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Weill Cornell Medical College, New York, NY, USA.

Scott W Lowe (SW)

Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Howard Hughes Medical Institute, New York, NY, USA.

Ed Reznik (E)

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. reznike@mskcc.org.
Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. reznike@mskcc.org.

Barry S Taylor (BS)

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. taylorb@mskcc.org.
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. taylorb@mskcc.org.
Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. taylorb@mskcc.org.
Weill Cornell Medical College, New York, NY, USA. taylorb@mskcc.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH