Phase and context shape the function of composite oncogenic mutations.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
07
09
2019
accepted:
06
04
2020
pubmed:
29
5
2020
medline:
10
7
2020
entrez:
29
5
2020
Statut:
ppublish
Résumé
Cancers develop as a result of driver mutations
Identifiants
pubmed: 32461694
doi: 10.1038/s41586-020-2315-8
pii: 10.1038/s41586-020-2315-8
pmc: PMC7294994
mid: NIHMS1582596
doi:
Substances chimiques
TERT protein, human
EC 2.7.7.49
Telomerase
EC 2.7.7.49
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
100-103Subventions
Organisme : NCI NIH HHS
ID : R01 CA207244
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA087497
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA204749
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA160001
Pays : United States
Organisme : NIH HHS
ID : U54 OD020355
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA245069
Pays : United States
Organisme : NCI NIH HHS
ID : K08 CA245192
Pays : United States
Références
Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).
pubmed: 23539594
pmcid: 3749880
Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).
pubmed: 23540688
Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).
pubmed: 1143315
Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).
pubmed: 959840
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
doi: 10.1016/j.cell.2011.02.013
pubmed: 21376230
Hyman, D. M., Taylor, B. S. & Baselga, J. Implementing genome-driven oncology. Cell 168, 584–599 (2017).
pubmed: 28187282
pmcid: 5463457
Knudson, A. G., Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).
pubmed: 5279523
pmcid: 389051
Bielski, C. M. et al. Widespread selection for oncogenic mutant allele imbalance in cancer. Cancer Cell 34, 852–862.e4 (2018).
pubmed: 30393068
pmcid: 6234065
Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).
pubmed: 23770567
pmcid: 3919509
Jin, G. et al. Disruption of wild-type IDH1 suppresses d-2-hydroxyglutarate production in IDH1-mutated gliomas. Cancer Res. 73, 496–501 (2013).
pubmed: 23204232
Mueller, S. et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature 554, 62–68 (2018).
pubmed: 29364867
pmcid: 6097607
Chang, M. T. et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat. Biotechnol. 34, 155–163 (2016).
pubmed: 26619011
Chang, M. T. et al. Accelerating discovery of functional mutant alleles in cancer. Cancer Discov. 8, 174–183 (2018).
pubmed: 29247016
Intlekofer, A. M. et al. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature 559, 125–129 (2018).
pubmed: 29950729
pmcid: 6121718
Hidaka, N. et al. Most T790M mutations are present on the same EGFR allele as activating mutations in patients with non-small cell lung cancer. Lung Cancer 108, 75–82 (2017).
pubmed: 28625653
Gainor, J. F. et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 6, 1118–1133 (2016).
pubmed: 27432227
pmcid: 5050111
Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).
pubmed: 15728811
Vasan, N. et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science 366, 714–723 (2019).
pubmed: 31699932
pmcid: 7173400
Chen, Z. et al. EGFR somatic doublets in lung cancer are frequent and generally arise from a pair of driver mutations uncommonly seen as singlet mutations: one-third of doublets occur at five pairs of amino acids. Oncogene 27, 4336–4343 (2008).
pubmed: 18372921
Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013).
pubmed: 23348506
pmcid: 4423787
Bell, R. J. A. et al. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 348, 1036–1039 (2015).
pubmed: 25977370
pmcid: 4456397
Berenjeno, I. M. et al. Oncogenic PIK3CA induces centrosome amplification and tolerance to genome doubling. Nat. Commun. 8, 1773 (2017).
pubmed: 29170395
pmcid: 5701070
Kinross, K. M. et al. An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice. J. Clin. Invest. 122, 553–557 (2012).
pubmed: 22214849
pmcid: 3266789
Madsen, R. R. et al. Oncogenic PIK3CA promotes cellular stemness in an allele dose-dependent manner. Proc. Natl Acad. Sci. USA 116, 8380–8389 (2019).
pubmed: 30948643
pmcid: 6486754
Hyman, D. M. et al. Precision medicine at Memorial Sloan Kettering Cancer Center: clinical next-generation sequencing enabling next-generation targeted therapy trials. Drug Discov. Today 20, 1422–1428 (2015).
pubmed: 26320725
pmcid: 4940024
Cheng, D. T. et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17, 251–264 (2015).
pubmed: 25801821
pmcid: 5808190
Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).
pubmed: 28481359
pmcid: 5461196
Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. 1, 1–16 (2017).
Campbell, B. B. et al. Comprehensive analysis of hypermutation in human cancer. Cell 171, 1042–1056.e10 (2017).
pubmed: 29056344
pmcid: 5849393
Niu, B. et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics 30, 1015–1016 (2014).
pubmed: 24371154
Middha, S. et al. Reliable pan-cancer microsatellite instability assessment by using targeted next-generation sequencing data. JCO Precis. Oncol. 1, 1–17 (2017).
Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3, 246–259 (2013).
pubmed: 23318258
pmcid: 3588146
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
Smedley, D. et al. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. 43, W589–W598 (2015).
pubmed: 25897122
pmcid: 4489294
Forbes, S. A. et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015).
pubmed: 25355519
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).
pubmed: 23945592
pmcid: 3776390
Alexandrov, L. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).
pubmed: 32025018
pmcid: 7054213
Pich, O. et al. Somatic and germline mutation periodicity follow the orientation of the DNA minor groove around nucleosomes. Cell 175, 1074–1087.e18 (2018).
pubmed: 30388444
Sabarinathan, R., Mularoni, L., Deu-Pons, J., Gonzalez-Perez, A. & López-Bigas, N. Nucleotide excision repair is impaired by binding of transcription factors to DNA. Nature 532, 264–267 (2016).
pubmed: 27075101
Buisson, R. et al. Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features. Science 364, eaaw2872 (2019).
pubmed: 31249028
pmcid: 6731024
Hess, J. M. et al. Passenger hotspot mutations in cancer. Cancer Cell 36, 288–301.e14 (2019).
pubmed: 31526759
pmcid: 7371346
Needleman, S. B. & Wunsch, C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970).
pubmed: 5420325
McGranahan, N. et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci. Transl. Med. 7, 283ra54 (2015).
pubmed: 25877892
pmcid: 4636056
Dimitrova, N. et al. Stromal expression of miR-143/145 promotes neoangiogenesis in lung cancer development. Cancer Discov. 6, 188–201 (2016).
pubmed: 26586766
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
Bult, C. J., Blake, J. A., Smith, C. L., Kadin, J. A. & Richardson, J. E. Mouse genome database (MGD) 2019. Nucleic Acids Res. 47, D801–D806 (2019).
pubmed: 30407599
Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 (2018).
pubmed: 29140473
Tan, G. & Lenhard, B. TFBSTools: an R/bioconductor package for transcription factor binding site analysis. Bioinformatics 32, 1555–1556 (2016).
pubmed: 26794315
pmcid: 4866524
Touzet, H. & Varré, J.-S. Efficient and accurate P-value computation for position weight matrices. Algorithms Mol. Biol. 2, 15 (2007).
pubmed: 18072973
pmcid: 2238751
Supek, F. & Lehner, B. Clustered mutation signatures reveal that error-prone DNA repair targets mutations to active genes. Cell 170, 534–547.e23 (2017).
pubmed: 28753428
Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).
pubmed: 22608084
pmcid: 3414841