Biogenic iron-silver nanoparticles inhibit bacterial biofilm formation due to Ag
Anti-Bacterial Agents
/ chemistry
Biofilms
/ drug effects
Culture Media
/ chemistry
Iron
/ analysis
Klebsiella oxytoca
/ metabolism
Metal Nanoparticles
/ chemistry
Microbial Sensitivity Tests
Phycoerythrin
/ chemistry
Polysaccharides, Bacterial
/ chemistry
Pseudomonas aeruginosa
/ drug effects
Silver
/ chemistry
Staphylococcus aureus
/ drug effects
Bacterial exopolysaccharide
Biofilm formation inhibition
Biogenic bimetal nanoparticles
Nanoparticle production yield
Phycoerythrin fluorescence–based assay
Silver ion release
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
Jul 2020
Jul 2020
Historique:
received:
25
02
2020
accepted:
17
05
2020
revised:
28
04
2020
pubmed:
29
5
2020
medline:
25
2
2021
entrez:
29
5
2020
Statut:
ppublish
Résumé
Silver nanoparticles (Ag-NPs) can be considered as a cost-effective alternative to antibiotics. In the presence of Fe(III)-citrate and Ag
Identifiants
pubmed: 32462243
doi: 10.1007/s00253-020-10686-w
pii: 10.1007/s00253-020-10686-w
doi:
Substances chimiques
Anti-Bacterial Agents
0
Culture Media
0
Polysaccharides, Bacterial
0
Phycoerythrin
11016-17-4
Silver
3M4G523W1G
Iron
E1UOL152H7
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6325-6336Subventions
Organisme : Università di Palermo
ID : none
Organisme : Università Ca' Foscari di Venezia
ID : none
Références
Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983
doi: 10.1039/C3RA44507K
Ahmed NT, Mazid MA (2018) Synthesis and functional evaluation of nanoparticle conjugated antibiotics. New Biotechnol 44:S95–S96. https://doi.org/10.1016/j.nbt.2018.05.960
doi: 10.1016/j.nbt.2018.05.960
Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28. https://doi.org/10.1016/j.jare.2015.02.007
doi: 10.1016/j.jare.2015.02.007
pubmed: 26843966
Al-Asfar A, Zaheer Z, Aazam ES (2018) Eco-friendly green synthesis of Ag@Fe bimetallic nanoparticles: antioxidant, antimicrobial and photocatalytic degradation of bromothymol blue. J Photochem Photobiol B 185:143–152. https://doi.org/10.1016/j.jphotobiol.2018.05.028
doi: 10.1016/j.jphotobiol.2018.05.028
pubmed: 29906655
Arčon I, Piccolo O, Paganelli S, Baldi F (2012) XAS analysis of a nanostructured iron polysaccharide produced anaerobically by a strain of Klebsiella oxytoca. Biometals 25:875–881
doi: 10.1007/s10534-012-9554-6
Arčon I, Paganelli S, Piccolo O, Gallo M, Vogel-Mikuš K, Baldi F (2015) XAS analysis of iron and palladium bonded to a polysaccharide produced anaerobically by a strain of Klebsiella oxytoca. J Synchrotron Radiat 22:1215–1226
doi: 10.1107/S1600577515010371
Baldi F, Olson GJ (1987) Effects of cinnabar on pyrite oxidation by Thiobacillus ferrooxidans and cinnabar mobilization by a mercury-resistant strain. Appl Environ Microbiol 53:772–776
doi: 10.1128/AEM.53.4.772-776.1987
Baldi F, Bralia A, Riccobono F, Sabatini G (1991) Bioleaching of cobalt and zinc from pyrite ore in relation to calcitic gangue content. World J Microbiol Biotechnol 7:298–308
doi: 10.1007/BF00329395
Baldi F, Minacci A, Pepi M, Scozzafava A (2001) Gel sequestration of heavy metals by Klebsiella oxytoca isolated from iron mat. FEMS Microbiol Ecol 36:169–174
doi: 10.1111/j.1574-6941.2001.tb00837.x
Baldi F, Marchetto D, Battistel D, Daniele S, Faleri C, De Castro C, Lanzetta R (2009) Iron-binding characterization and polysaccharide production by Klebsiella oxytoca strain isolated from mine acid drainage. J Appl Microbiol 107:1241–1250. https://doi.org/10.1111/j.1365-2672.2009.04302.x
doi: 10.1111/j.1365-2672.2009.04302.x
pubmed: 19508299
pmcid: 2810433
Baldi F, Marchetto D, Zanchettin D, Sartorato E, Paganelli S, Piccolo O (2010) A bio-generated Fe(III)-binding exopolysaccharide used as new catalyst for phenol hydroxylation. Green Chem 12:1405–1409. https://doi.org/10.1039/C004967K
Baldi F, Daniele S, Gallo M, Paganelli S, Battistel D, Piccolo O, Faleri C, Puglia AM, Gallo G (2016a) Polysaccharide-based silver nanoparticles synthesized by Klebsiella oxytoca DSM 29614 cause DNA fragmentation in E. coli cells. BioMetals 29. https://doi.org/10.1007/s10534-016-9918-4
Baldi F, Gallo M, Paganelli S, Tassini R, Sperni L, Piccolo O, Zambon S, Piazza R, Natile MM, Armelao L (2016b) Hydrodechlorination of aroclor 1260 in aqueous two-phase mixture catalyzed by biogenerated bimetallic catalysts. Int Res J Pure Appl Chem 11:1–9
doi: 10.9734/IRJPAC/2016/25136
Banerjee A, Halder U, Bandopadhyay R (2017) Preparations and applications of polysaccharide based green synthesized metal nanoparticles: a state-of-the-art. J Clust Sci 28:1803–1813. https://doi.org/10.1007/s10876-017-1219-8
Battistel D, Baldi F, Gallo M, Faleri C, Daniele S (2015) Characterisation of biosynthesised silver nanoparticles by scanning electrochemical microscopy (SECM) and voltammetry. Talanta 132:294–300. https://doi.org/10.1016/j.talanta.2014.09.023
doi: 10.1016/j.talanta.2014.09.023
pubmed: 25476311
Bekasova OD, Brekhovskikh AA, Revina AA, Dubinchuk VT (2008) Preparation and optical properties of silver nanoparticles in R-phycoerythrin, a protein matrix. Inorg Mater 44:835–841. https://doi.org/10.1134/S0020168508080098
doi: 10.1134/S0020168508080098
Bekasova OD, Ryvkina NG, Chmutin IA, Shtein-Margolina VA, Kurganov BI (2017) Electrical properties of R-phycoerythrin containing Ag0 nanoparticles in its channels. Inorg Mater 53:1249–1253. https://doi.org/10.1134/S0020168517120032
doi: 10.1134/S0020168517120032
Bose JL, Lehman MK, Fey PD, Bayles KW (2012) Contribution of the Staphylococcus aureus Atl AM and GL murein hydrolase activities in cell division, autolysis, and biofilm formation. PLoS One 7:e42244. https://doi.org/10.1371/journal.pone.0042244
doi: 10.1371/journal.pone.0042244
pubmed: 22860095
pmcid: 3409170
Buttacavoli M, Albanese NN, Di Cara G, Alduina R, Faleri C, Gallo M, Pizzolanti G, Gallo G, Feo S, Baldi F, Cancemi P (2018) Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget 9:9–9705. https://doi.org/10.18632/oncotarget.23859
doi: 10.18632/oncotarget.23859
Escárcega-González CE, Garza-Cervantes JA, Vazquez-Rodríguez A, Montelongo-Peralta LZ, Treviño-Gonzalez MT, Díaz Barriga Castro E, Saucedo-Salazar EM, Chávez Morales RM, Regalado-Soto DI, Treviño-González FM, Carrazco Rosales JL, Villalobos Cruz R, Morones-Ramirez JR (2018) In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. Int J Nanomed 13:2349–2363. https://doi.org/10.2147/IJN.S160605
doi: 10.2147/IJN.S160605
Gallo G, Presta L, Perrin E, Gallo M, Marchetto D, Puglia AM, Fani R, Baldi F (2018) Genomic traits of Klebsiella oxytoca DSM 29614, an uncommon metal-nanoparticle producer strain isolated from acid mine drainages. BMC Microbiol 18:198. https://doi.org/10.1186/s12866-018-1330-5
doi: 10.1186/s12866-018-1330-5
pubmed: 30482178
pmcid: 6258164
Green NJB, Pimblott SM, Tachiya M (1993) Generalizations of the Stern-Volmer relation. J Phys Chem 97:196–202. https://doi.org/10.1021/j100103a034
doi: 10.1021/j100103a034
Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M (2005) Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 59:629–638. https://doi.org/10.1016/j.chemosphere.2004.10.028
doi: 10.1016/j.chemosphere.2004.10.028
pubmed: 15792660
Harbarth S, Balkhy HH, Goossens H, Jarlier V, Kluytmans J, Laxminarayan R, Saam M, Van Belkum A, Pittet D (2015) Antimicrobial resistance: one world, one fight! Antimicrob Resist Infect Control 4:49
doi: 10.1186/s13756-015-0091-2
Javaid A, Oloketuyi SF, Khan MM, Khan F (2018) Diversity of bacterial synthesis of silver nanoparticles. Bionanoscience 8:43–59. https://doi.org/10.1007/s12668-017-0496-x
doi: 10.1007/s12668-017-0496-x
Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T (2015) Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci 5:499–504. https://doi.org/10.1007/s13204-014-0341-2
doi: 10.1007/s13204-014-0341-2
Khan F, Khan MM, Kim Y-M (2018) Recent progress and future perspectives of antibiofilm drugs immobilized on nanomaterials. Curr Pharm Biotechnol 19:631–643. https://doi.org/10.2174/1389201019666180828090052
doi: 10.2174/1389201019666180828090052
pubmed: 30152281
Khan F, Lee J-W, Manivasagan P, Pham DTN, Oh J, Kim Y-M (2019a) Synthesis and characterization of chitosan oligosaccharide-capped gold nanoparticles as an effective antibiofilm drug against the Pseudomonas aeruginosa PAO1. Microb Pathog 135:103623. https://doi.org/10.1016/j.micpath.2019.103623
doi: 10.1016/j.micpath.2019.103623
pubmed: 31325574
Khan F, Manivasagan P, Lee J-W, Pham D, Oh J, Kim Y-M (2019b) Fucoidan-stabilized gold nanoparticle-mediated biofilm inhibition, attenuation of virulence and motility properties in Pseudomonas aeruginosa PAO1. Mar Drugs 17:208. https://doi.org/10.3390/md17040208
doi: 10.3390/md17040208
pmcid: 6520775
Khan F, Manivasagan P, Pham DTN, Oh J, Kim S-K, Kim Y-M (2019c) Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa. Microb Pathog 128:363–373. https://doi.org/10.1016/j.micpath.2019.01.033
doi: 10.1016/j.micpath.2019.01.033
pubmed: 30684638
Kim Y, Oh S, Kim SH (2009) Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochem Biophys Res Commun 379:324–329. https://doi.org/10.1016/j.bbrc.2008.12.053
doi: 10.1016/j.bbrc.2008.12.053
pubmed: 19103165
Kim SW, Baek Y-W, An Y-J (2011) Assay-dependent effect of silver nanoparticles to Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol 92:1045–1052. https://doi.org/10.1007/s00253-011-3611-x
doi: 10.1007/s00253-011-3611-x
pubmed: 21986863
Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–354. https://doi.org/10.1016/j.nantod.2015.04.002
doi: 10.1016/j.nantod.2015.04.002
Leone S, De Castro C, Parrilli M, Baldi F, Lanzetta R (2007) Structure of the iron-binding exopolysaccharide produced anaerobically by the Gram-negative bacterium Klebsiella oxytoca BAS-10. Eur J Org Chem 2007:5183–5189
Losasso C, Belluco S, Cibin V, Zavagnin P, Mičetić I, Gallocchio F, Zanella M, Bregoli L, Biancotto G, Ricci A (2014) Antibacterial activity of silver nanoparticles: sensitivity of different Salmonella serovars. Front Microbiol 5:227. https://doi.org/10.3389/fmicb.2014.00227
doi: 10.3389/fmicb.2014.00227
pubmed: 24904542
pmcid: 4033309
Manivasagan P, Khan F, Hoang G, Mondal S, Kim H, Hoang Minh Doan V, Kim Y-M, Oh J (2019) Thiol chitosan-wrapped gold nanoshells for near-infrared laser-induced photothermal destruction of antibiotic-resistant bacteria. Carbohydr Polym 225:115228. https://doi.org/10.1016/j.carbpol.2019.115228
doi: 10.1016/j.carbpol.2019.115228
pubmed: 31521288
Markowska K, Grudniak AM, Wolska KI (2013) Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol 60:523–530
pubmed: 24432308
Mecozzi M, Acquistucci R, Di Noto V, Pietrantonio E, Amici M, Cardarilli D (2001) Characterization of mucilage aggregates in Adriatic and Tyrrhenian Sea: structure similarities between mucilage samples and the insoluble fractions of marine humic substance. Chemosphere 44:709–720
doi: 10.1016/S0045-6535(00)00375-1
Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R (2013) Antimicrobial silver: uses, toxicity and potential for resistance. Biometals 26:609–621
doi: 10.1007/s10534-013-9645-z
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR (2019) Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 10:539. https://doi.org/10.3389/fmicb.2019.00539
doi: 10.3389/fmicb.2019.00539
pubmed: 30988669
pmcid: 6452778
Paganelli S, Piccolo O, Baldi F, Tassini R, Gallo M, La Sorella G (2013) Aqueous biphasic hydrogenations catalyzed by new biogenerated Pd-polysaccharide species. Appl Catal A Gen 451:144–152. https://doi.org/10.1016/j.apcata.2012.10.040
doi: 10.1016/j.apcata.2012.10.040
Paganelli S, Piccolo O, Baldi F, Gallo M, Tassini R, Rancan M, Armelao L (2015a) A new biogenerated Rh-based catalyst for aqueous biphasic hydroformylation. Catal Commun 71:32–36. https://doi.org/10.1016/j.catcom.2015.08.001
doi: 10.1016/j.catcom.2015.08.001
Paganelli S, Tassini R, La Sorella G, Piccolo O, Baldi F, Rathod VD (2015b) Aqueous biphasic treatment of some nitrocompounds with hydrogen in the presence of a biogenerated Pd-polysaccharide. New Biotechnol 32:313–317. https://doi.org/10.1016/j.nbt.2015.01.010
doi: 10.1016/j.nbt.2015.01.010
Panáček A, Kvitek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Jana NT, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253
doi: 10.1021/jp063826h
Pham DTN, Khan F, Phan TTV, Park S-K, Manivasagan P, Oh J, Kim Y-M (2019) Biofilm inhibition, modulation of virulence and motility properties by FeOOH nanoparticle in Pseudomonas aeruginosa. Braz. J Microbiol 50:791–805. https://doi.org/10.1007/s42770-019-00108-z
doi: 10.1007/s42770-019-00108-z
Picceri GG, Leonardi P, Iotti M, Gallo M, Baldi F, Zambonelli A, Amicucci A, Vallorani L, Piccoli G, Ciccimarra G, Arshakyan M, Burattini S, Falcieri E, Chiarantini L (2018) Bacteria-produced ferric exopolysaccharide nanoparticles as iron delivery system for truffles (Tuber borchii). Appl Microbiol Biotechnol 102:1429–1441. https://doi.org/10.1007/s00253-017-8615-8
doi: 10.1007/s00253-017-8615-8
pubmed: 29189902
Raimondi MV, Maggio B, Raffa D, Plescia F, Cascioferro S, Cancemi G, Schillaci D, Cusimano MG, Vitale M, Daidone G (2012) Synthesis and anti-staphylococcal activity of new 4-diazopyrazole derivatives. Eur J Med Chem 58:64–71. https://doi.org/10.1016/j.ejmech.2012.09.041
doi: 10.1016/j.ejmech.2012.09.041
pubmed: 23088933
Raimondi MV, Listro R, Cusimano MG, La Franca M, Faddetta T, Gallo G, Schillaci D, Collina S, Leonchiks A, Barone G (2019) Pyrrolomycins as antimicrobial agents. Microwave-assisted organic synthesis and insights into their antimicrobial mechanism of action. Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2019.01.010
Rendueles O, Kaplan JB, Ghigo J-M (2013) Antibiofilm polysaccharides. Environ Microbiol 15:334–346. https://doi.org/10.1111/j.1462-2920.2012.02810.x
doi: 10.1111/j.1462-2920.2012.02810.x
pubmed: 22730907
Rigo C, Zamengo L, Rampazzo G, Argese E (2009) Characterization of a former dump site in the Lagoon of Venice contaminated by municipal solid waste incinerator bottom ash, and estimation of possible environmental risk. Chemosphere 77:510–517. https://doi.org/10.1016/j.chemosphere.2009.07.046
doi: 10.1016/j.chemosphere.2009.07.046
pubmed: 19695669
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform 18:529. https://doi.org/10.1186/s12859-017-1934-z
doi: 10.1186/s12859-017-1934-z
Russo M, Armetta F, Riela S, Martino DC, Lo MP, Noto R (2015) Silver nanoparticles stabilized by a polyaminocyclodextrin as catalysts for the reduction of nitroaromatic compounds. J Mol Catal A Chem 408:250–261. https://doi.org/10.1016/j.molcata.2015.07.031
doi: 10.1016/j.molcata.2015.07.031
Russo M, Meli A, Sutera A, Gallo G, Chillura Martino D, Lo Meo P, Noto R (2016) Photosynthesized silver–polyaminocyclodextrin nanocomposites as promising antibacterial agents with improved activity. RSC Adv 6:40090–40099. https://doi.org/10.1039/C6RA00042H
doi: 10.1039/C6RA00042H
Sahukhal GS, Batte JL, Elasri MO (2015) msaABCR operon positively regulates biofilm development by repressing proteases and autolysis in Staphylococcus aureus. FEMS Microbiol Lett 362. https://doi.org/10.1093/femsle/fnv006
Saravanan C, Rajesh R, Kaviarasan T, Muthukumar K, Kavitake D, Shetty PH (2017) Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Rep 15:33–40. https://doi.org/10.1016/j.btre.2017.02.006
doi: 10.1016/j.btre.2017.02.006
Schillaci D, Maggio B, Raffa D, Daidone G, Cascioferro S, Cusimano MG, Raimondi MV (2008) 4-Diazopyrazole derivatives as potential new antibiofilm agents. Chemotherapy 54:456–462. https://doi.org/10.1159/000159271
doi: 10.1159/000159271
pubmed: 18832818
Sfriso AA, Gallo M, Baldi F (2018) Phycoerythrin productivity and diversity from five red macroalgae. J Appl Phycol 30:2523–2531. https://doi.org/10.1007/s10811-018-1440-3
doi: 10.1007/s10811-018-1440-3
Wang C, Gao X, Chen Z, Chen Y, Chen H (2017) Preparation, characterization and application of polysaccharide-based metallic nanoparticles: a review. Polymers (Basel) 9:689
doi: 10.3390/polym9120689
Yuan Y-G, Peng Q-L, Gurunathan S (2017) Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int J Mol Sci 18:18. https://doi.org/10.3390/ijms18030569
Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q, Yang H, Jin M (2018) Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol 38:817–835. https://doi.org/10.1080/07388551.2017.1414141
doi: 10.1080/07388551.2017.1414141
pubmed: 29254388