A Deep-Learning Approach toward Rational Molecular Docking Protocol Selection.


Journal

Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009

Informations de publication

Date de publication:
27 May 2020
Historique:
received: 28 04 2020
revised: 23 05 2020
accepted: 26 05 2020
entrez: 31 5 2020
pubmed: 31 5 2020
medline: 2 3 2021
Statut: epublish

Résumé

While a plethora of different protein-ligand docking protocols have been developed over the past twenty years, their performances greatly depend on the provided input protein-ligand pair. In this study, we developed a machine-learning model that uses a combination of convolutional and fully connected neural networks for the task of predicting the performance of several popular docking protocols given a protein structure and a small compound. We also rigorously evaluated the performance of our model using a widely available database of protein-ligand complexes and different types of data splits. We further open-source all code related to this study so that potential users can make informed selections on which protocol is best suited for their particular protein-ligand pair.

Identifiants

pubmed: 32471211
pii: molecules25112487
doi: 10.3390/molecules25112487
pmc: PMC7321124
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Références

Nucleic Acids Res. 2004 Jan 1;32(Database issue):D138-41
pubmed: 14681378
J Cheminform. 2017 Jun 12;9(1):37
pubmed: 29086077
J Med Chem. 2004 Mar 25;47(7):1739-49
pubmed: 15027865
J Comput Aided Mol Des. 2016 Sep;30(9):773-789
pubmed: 27638810
J Chem Inf Model. 2013 Apr 22;53(4):783-90
pubmed: 23521722
Chem Sci. 2019 Oct 16;10(47):10911-10918
pubmed: 32190246
J Chem Inf Model. 2019 Mar 25;59(3):1205-1214
pubmed: 30762364
J Chem Theory Comput. 2016 Apr 12;12(4):1845-52
pubmed: 26949976
J Chem Inf Model. 2017 Apr 24;57(4):942-957
pubmed: 28368587
J Chem Inf Model. 2020 Mar 3;:
pubmed: 32077698
Int J Mol Sci. 2019 Jul 20;20(14):
pubmed: 31330841
Chemistry. 2017 May 2;23(25):5966-5971
pubmed: 28134452
J Chem Inf Model. 2009 Jan;49(1):84-96
pubmed: 19125657
J Comput Aided Mol Des. 2018 Jan;32(1):251-264
pubmed: 28840418
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
Proteins. 2006 Oct 1;65(1):15-26
pubmed: 16862531
Bioinformatics. 2020 Apr 1;36(7):2113-2118
pubmed: 31746961
Bioinformatics. 2015 Feb 1;31(3):405-12
pubmed: 25301850
Chem Cent J. 2008 Mar 09;2:5
pubmed: 18328109
Proteins. 2003 Sep 1;52(4):609-23
pubmed: 12910460
Bioinformatics. 2017 Oct 1;33(19):3036-3042
pubmed: 28575181
Chem Sci. 2017 Oct 31;9(2):513-530
pubmed: 29629118
Molecules. 2015 May 29;20(6):9977-93
pubmed: 26035098
J Comput Aided Mol Des. 2018 Jan;32(1):1-20
pubmed: 29204945
Curr Top Med Chem. 2008;8(18):1555-72
pubmed: 19075767
J Chem Inf Model. 2014 Aug 25;54(8):2243-54
pubmed: 25046649
Nature. 2018 Mar 28;555(7698):604-610
pubmed: 29595767
J Med Chem. 2004 Jun 3;47(12):2977-80
pubmed: 15163179
J Comput Chem. 2010 Jan 30;31(2):455-61
pubmed: 19499576
J Chem Inf Model. 2019 Mar 25;59(3):1172-1181
pubmed: 30586501
J Chem Inf Model. 2010 Nov 22;50(11):1961-9
pubmed: 20936880
J Chem Inf Model. 2010 May 24;50(5):742-54
pubmed: 20426451
Nat Rev Drug Discov. 2004 Nov;3(11):935-49
pubmed: 15520816
J Comput Aided Mol Des. 2016 Sep;30(9):651-668
pubmed: 27696240
Proteins. 2003 Nov 15;53(3):693-707
pubmed: 14579360
J Comput Aided Mol Des. 2016 Aug;30(8):595-608
pubmed: 27558503
ACS Cent Sci. 2018 Feb 28;4(2):268-276
pubmed: 29532027
ACS Cent Sci. 2018 Nov 28;4(11):1520-1530
pubmed: 30555904
J Mol Recognit. 1996 Jan-Feb;9(1):1-5
pubmed: 8723313
J Comput Aided Mol Des. 2019 Jan;33(1):1-18
pubmed: 30632055

Auteurs

José Jiménez-Luna (J)

Department of Chemistry and Applied Biosciences, RETHINK, ETH Zuerich, Vladimir-Prelog-Weg 4, 8093 Zuerich, Switzerland.
Institute for Pure & Applied Mathematics, University California Los Angeles, 460 Portola Plaza, Los Angeles, CA 90095-7121, USA.

Alberto Cuzzolin (A)

Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.

Giovanni Bolcato (G)

Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.

Mattia Sturlese (M)

Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.

Stefano Moro (S)

Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Animals Hemiptera Insect Proteins Phylogeny Insecticides

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis

Classifications MeSH